UVa 437 巴比伦塔(The Tower of Babylon)详细题解

博客详细解析了UVa 437巴比伦塔问题,通过动态规划求解最长路径。讨论了递推错误并提供正确记忆化搜索的解决方案。
摘要由CSDN通过智能技术生成

累加器传送门:

http://blog.csdn.net/NOIAu/article/details/71775000

题目传送门:https://vjudge.net/problem/UVA-437

题目:

Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of this tale
have been forgotten. So now, in line with the educational nature of this contest, we will tell you the
whole story:
The babylonians had n types of blocks, and an unlimited supply of blocks of each type.
Each type-i block was a rectangular solid with linear dimensions (xi; yi; zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height. They wanted to construct the tallest tower possible by stacking blocks. The problem was that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block. This meant, for example, that blocks oriented to have
equal-sized bases couldn’t be stacked.
Your job is to write a program that determines the height of the tallest tower the babylonians can
build with a given set of blocks.

输入:

The input file will contain one or more test cases. The first line of each test case contains an integer n,
representing the number of different blocks in the following data set. The maximum value for n is 30.
Each of the next n lines contains three integers representing the values xi, yi and zi. Input is terminated by a value of zero (0) for n.

输出:

For each test case, print one line containing the case number (they are numbered sequentially starting
from 1) and the height of the tallest possible tower in the format‘Case case: maximum height = height’

样例输入:

1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0

样例输出:

Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342

这道题我们一开始应该就能想到要用最上层是哪个面来设计dp转移,比如dp[i][j]表示最上面的面的尺寸是i* j的,这样或许是可以的,但是有一个问题,长,宽,高可能会很大,这样一来很可能会MLE,那怎么办呢,我们可以转化一下思想,用dp[i][j]来表示第i个长方体的第j号边作为最上面位置的高,什么叫第j号边呢

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值