dp斜率优化 Hdu 3045(Picnic Cows)题解

累加器传送门:

http://blog.csdn.net/NOIAu/article/details/71775000

题目传送门:

https://vjudge.net/problem/HDU-3045

题目:

It’s summer vocation now. After tedious milking, cows are tired and wish to take a holiday. So Farmer Carolina considers having a picnic beside the river. But there is a problem, not all the cows consider it’s a good idea! Some cows like to swim in West Lake, some prefer to have a dinner in Shangri-la ,and others want to do something different. But in order to manage expediently, Carolina coerces all cows to have a picnic!
Farmer Carolina takes her N (N from 1 to 400000) cows to the destination, but she finds every cow’s degree of interest in this activity is so different that they all loss their interests. So she has to group them to different teams to make sure that every cow can go to a satisfied team. Considering about the security, she demands that there must be no less than T(T from 1 to N)cows in every team. As every cow has its own interest degree of this picnic, we measure this interest degree’s unit as “Moo~”. Cows in the same team should reduce their Moo~ to the one who has the lowest Moo~ in this team——It’s not a democratical action! So Carolina wishes to minimize the TOTAL reduced Moo~s and groups N cows into several teams.
For example, Carolina has 7 cows to picnic and their Moo~ are ‘8 5 6 2 1 7 6’ and at least 3 cows in every team. So the best solution is that cow No.2,4,5 in a team (reduce (2-1)+(5-1) Moo~)and cow No.1,3,6,7 in a team (reduce ((7-6)+(8-6)) Moo~),the answer is 8.


输入:

The input contains multiple cases.
For each test case, the first line has two integer N, T indicates the number of cows and amount of Safe-base line.
Following n numbers, describe the Moo~ of N cows , 1st is cow 1 , 2nd is cow 2, and so on.


输出:

One line for each test case, containing one integer means the minimum of the TOTAL reduced Moo~s to group N cows to several teams.


样例输入:

7 3
8 5 6 2 1 7 6


样例输出:

8


题目大意:

给出一个有N (1<=N<=400000)个正数的序列,要求把序列分成若干组(可以打乱顺序),每组的元素个数不能小于T (1<=T<=N)。每一组的代价是每个元素与最小元素的差之和,总代价是每个组的代价之和,求总代价的最小值


很容易写出状态转移方程
用dp[i]表示排了序之后的数据的前i个点都分好了组,所需要的最低代价,用cnt[i]表示前缀和

dp[i] = min(dp[j]+cnt[i] – cnt[j] – a[j+1]*(i-j))

将和j无关的东西提出来得到

dp[i] = min(dp[j]-cnt[j]+a[j+1]*j– a[j+1]*i) + cnt[i] 

所以有

dp[i]=dp[j]-cnt[j]+a[j+1]*j– a[j+1]*i

令dp[i]为b,dp[j]-cnt[j]+a[j+1]*j为y,a[j+1]为x,i为k
原来的式子转化为

b=y-k*x;

移项得到

y=k*x+b;

所以这里用斜率优化维护点集(x,y)即可
斜率优化的讲解在这篇博客上,这里就不再讨论
http://blog.csdn.net/NOIAu/article/details/71774994
注意几点:

F:

由于题目原因,i和j至少相隔T,所以我们每次只需要入队i-T+1的就行了,入多了暂时也用不了,还有可能出错,不如不入

S:

在判断Tail的时候,我的while内是这样写的

head+1<tail
&&
gay(j,q[tail-1])*gax(q[tail-1],q[tail-2])
<=
gax(j,q[tail-1])*gay(q[tail-1],q[tail-2])

是用在那篇博客上写的向量的叉乘来判断的,为什么是
j,q[tail-1]和q[tail-1],q[tail-2]呢?
为什么不是q[tail]和q[tail-1]呢?
我们可以这样理解

这里写图片描述

对于这个P点来说,如果向量q[tail-1]P在向量q[tail-2]q[tail-1]的顺时针方向,由于这是一个凸包,每条边斜率满足单调性,所以显然,向量q[tail-1]P也一定在q[tail-1]q[tail]的顺时针方向,所以此时tail - - 没毛病,那么一直减到这个不成立的时候,也就是q[tail-1]P在q[tail-2][tail-1]的逆时针方向的时候P点一定是满足的点,并且会替代掉当前的q[tail]点,所以之后是q[tail++]=j,而不是q[++tail]=j,而x满足单调性,所以不可能出现在q[tail-1]和q[tail]的中间,所以自然,该算法成立,还有另一个原因是因为,注意到这个gay()函数和gax函数,是要输入i计算的时候涉及到i+1,所以如果算tail的话,哪里来的tail+1呢?所以这里也必须要这样计算

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#define MAXN 400000+10
#define LL long long
using namespace std;

int q[MAXN];
int N,T;
LL dp[MAXN];
LL cnt[MAXN];
int head,tail;
LL a[MAXN];

LL gay(int j,int k){
    return dp[j]-cnt[j]+j*a[j+1]-(dp[k]-cnt[k]+k*a[k+1]);
} 
LL gax(int j,int k){  
    return a[j+1]-a[k+1];
}
LL gad(int i,int j)
{
    return dp[j]+(cnt[i]-cnt[j])-a[j+1]*(i-j);
}


int main(){
    freopen("in.in","r",stdin);
    while(~scanf("%d%d",&N,&T)){
        head=0,tail=0;
        cnt[0]=dp[0]=a[0]=0;
        for(int i=1;i<=N;i++) scanf("%I64d",&a[i]);
        sort(a+1,a+N+1);
        for(int i=1;i<=N;i++)cnt[i]=cnt[i-1]+a[i];
        q[tail++]=0;
        for(int i=1;i<=N;i++){
            while(head+1<tail&&gay(q[head+1],q[head])-i*gax(q[head+1],q[head])<=0){
                head++;
            }
            dp[i]=gad(i,q[head]);
            int j=i-T+1;
            if(j<T)continue; 
            while(head+1<tail&&gay(j,q[tail-1])*gax(q[tail-1],q[tail-2])<=gax(j,q[tail-1])*gay(q[tail-1],q[tail-2])){
                tail--;
            }
            q[tail++]=j;
        }
        cout<<dp[N]<<endl;
    }
    return 0;
}  

这里写图片描述

### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值