题目描述
给定一个正整数k(3≤k≤15),把所有k的方幂及所有有限个互不相等的k的方幂之和构成一个递增的序列,例如,当k=3时,这个序列是:
1,3,4,9,10,12,13,…
(该序列实际上就是:30,31,30+31,32,30+32,31+32,30+31+32,…)
请你求出这个序列的第N项的值(用10进制数表示)。
例如,对于k=3,N=100,正确答案应该是981。
输入
输入文件sequence.in 只有1行,为2个正整数,用一个空格隔开:
k N
(k、N的含义与上述的问题描述一致,且3≤k≤15,10≤N≤1000)。
输出
输出文件sequence.out 为计算结果,是一个正整数(在所有的测试数据中,结果均不超过2.1*109)。(整数前不要有空格和其他符号)。
样例输入
3 100
样例输出
981
显然我们只需要枚举每次最大的那个数,然后分别一个一个地加上之前的数,从最小开始就可以了,因为前面所有数之后绝对不会大于多一次幂的值,所以放心加
#include<cmath>
#include<iostream>
#include<cstdio>
using namespace std;
long long a[100000];
int n,m,k=1,t;
int main(){
freopen("sequenc.in","r",stdin);
freopen("sequenc.out","w",stdout);
scanf("%d%d",&m,&n);
for(register int i=0;i<100;i++){
t=k;
for(register int j=0;j<t;j++){
a[k]=pow(m,i)+a[j];
if(k==n){
printf("%d\n",a[k]);
return 0;
}else{
k++;
}
}
}
return 0;
}