Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 942 Solved: 635
Description
小B有一个序列,包含N个1~K之间的整数。他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重复次数。小B请你帮助他回答询问。
Input
第一行,三个整数N、M、K。
第二行,N个整数,表示小B的序列。
接下来的M行,每行两个整数L、R。
Output
M行,每行一个整数,其中第i行的整数表示第i个询问的答案。
Sample Input
6 4 3
1 3 2 1 1 3
1 4
2 6
3 5
5 6
Sample Output
6
9
5
2
HINT
对于全部的数据,1<=N、M、K<=50000
Source
题解:
显然就是一道裸莫队,裸到不能再裸…我们可以称其为,没有穿衣服的莫队算法
/**************************************************************
Problem: 3781
User: cdqz_hhl
Language: C++
Result: Accepted
Time:1688 ms
Memory:3060 kb
****************************************************************/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long long
const int MAXN=50005;
using namespace std;
int n,m,K,len;
int b[MAXN];
long long cnt[MAXN],final[MAXN];
struct Question{
int l,r,loc,id;
}q[MAXN];
bool cmp(const Question& A,const Question& B){
if(A.loc==B.loc) return A.r<B.r;
else return A.loc<B.loc;
}
void solve(){
sort(q+1,q+m+1,cmp);
int l=1,r=0;long long temp=0;
for(register int i=1;i<=m;i++){
while(l>q[i].l)l--,cnt[b[l]]++,temp+=2*cnt[b[l]]-1;
while(r<q[i].r)r++,cnt[b[r]]++,temp+=2*cnt[b[r]]-1;
while(l<q[i].l)cnt[b[l]]--,temp-=2*cnt[b[l]]+1,l++;
while(r>q[i].r)cnt[b[r]]--,temp-=2*cnt[b[r]]+1,r--;
final[q[i].id]=temp;
}
}
int main(){
scanf("%d%d%d",&n,&m,&K);
len=sqrt(n);
for(register int i=1;i<=n;i++) scanf("%d",&b[i]);
for(register int i=1;i<=m;i++){
scanf("%d%d",&q[i].l,&q[i].r);q[i].id=i;q[i].loc=(q[i].l-1)/len+1;
}
solve();
for(register int i=1;i<=m;i++) printf("%lld\n",final[i]);
return 0;
}