浅谈 概率与期望 DP

本文探讨概率与期望动态规划(DP)在解决竞赛编程问题中的应用,通过分析UVa 11021麻球繁衍、UVa 11427玩纸牌和POJ 2096等题目,阐述如何利用期望的线性性和全概率公式进行问题求解。并解释了在解决期望问题时,如何通过逆推或顺推的方式建立动态规划状态转移方程。
摘要由CSDN通过智能技术生成

概率与期望DP,一直都不会啊,感觉好难完全没法思考…


期望题一般是逆推,当然也有一些是顺推,然而现在我只做过一些水得很的期望题,好菜啊…


UVa 11021 麻球繁衍 蓝书p140


题解:

现在有k只麻球,每只麻球都只能活一天,但是可能会在死前爆出0到n-1值麻球,几率分别为 p0,p1,p2...pn1 ,求m天后所有麻球都死了的概率,因为每只麻球是独立的,这只麻球并不会导致另一只麻球死掉,也不会让另一只麻球少生几个麻球,所以我们只需要管最开始有1只麻球,然后最后用乘法原理即可,也就是第一只麻球死完的概率乘以第二只麻球死完的概率一直乘到第k只麻球死完的概率,如果有没有死的那就不行了。
问题转化为一只麻球在m天死完的概率,于是我们发现,在第i天死完的几率为生一个蛋的几率乘以(这一个蛋在)第i-1天死完的几率+生两个蛋的几率乘以(整两个蛋)在第i-1天死完的几率,也就是一个蛋在i-1天死完的几率乘以一个蛋在i-1天死完的几率。


#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
int T,n,k,m;
const int MAXN=1000+10;
double p[MAXN],dp[MAXN];
double fast_pow(double num,int k){
    double now=num;
    double ans=1.0;
    while(k){
        if(k&1) ans*=now;
        now*=now;k>>=1;
    }
    return ans;
}
int main(){
  scanf("%d",&T);
    for(register int kase=1;kase<=T;kase++){
        scanf("%d%d%d",&n,&k,&m);
        for(register int i=0;i<=n-1;i++) scanf("%lf",&p[i]);
        dp[0]=0;dp[1]=p[0];
        for(register int i=2;i<=m;i++){
            dp[i]=0;
            for(register int j=0;j<=n-1;j++){
                dp[i]+=p[j]*pow(dp[i-1],j);
            }
        }
        double ans=fast_pow(dp[m],k);
        printf("Case #%d: %0.7lf\n",kase,ans);
    }
    return 0;
}

这里写图片描述


UVa 11427 玩纸牌

这道题貌似很水,蓝书p141,我自己都写出来了,就是说我们要求的是一天晚上玩儿停了的概率,那么我们用1除以这个概率就可以了


#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
int T,n,a,b;
double p,dp[110][110];
int main(){
    scanf("%d",&T);
    for(register int kase=1;kase<=T;kase++){
        scanf("%d/%d %d",&a,&b,&n);
        p=(double)a/b;
        memset(dp,0,sizeof(dp));
        dp[0][0]=1.0;dp[0][1]=0.0;//在地0局,赢0局的概率为1,在第0局,赢1局的概率为0 
        for(register int i=1;i<=n;i++)
        for(register int i=1;i<=n;i++){
  //一共玩儿的局数应该小于a/b,故j/i<=a/b,即j*b<=i*a 
            for(register int j=0;j*b<=i*a;j++){
                if(j==0){
                    dp[i][j]=dp[i-1][j]*(1.0-p);
                    continue;
                }
                dp[i][j]=dp[i-1][j]*(1.0-p)+dp[i-1][j-1]*p;
            }
        }
        double ans=0.0;
        for(register int j=0;j*b<=a*n;j++) 
            ans+=dp[n][j];
        int final=floor(1/ans);
        printf("Case #%d: %d\n",kase,final);
    }
    return 0;
}

期望dp概率dp是两种不同的动态规划方法。 期望dp是指通过计算每个状态的期望值来求解最终的期望。在期望dp中,我们通常定义dp\[i\]表示在第i个状态时的期望值,然后通过状态转移方程来更新dp数组,最终得到最终状态的期望值。期望dp通常用于求解期望问题,例如求解骰子的期望点数、求解抽奖的期望次数等。 概率dp是指通过计算每个状态的概率来求解最终的概率。在概率dp中,我们通常定义dp\[i\]表示在第i个状态时的概率,然后通过状态转移方程来更新dp数组,最终得到最终状态的概率概率dp通常用于求解概率问题,例如求解抛硬币出现正面的概率、求解从一副牌中抽到红心的概率等。 总结来说,期望dp概率dp的区别在于它们所计算的是不同的值,期望dp计算的是期望值,而概率dp计算的是概率值。 #### 引用[.reference_title] - *1* [概率/期望dp专题](https://blog.csdn.net/qq_34416123/article/details/126585094)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [【动态规划】数学期望/概率DP/期望DP详解](https://blog.csdn.net/weixin_45697774/article/details/104274160)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值