BZOJ 1190: [HNOI2007]梦幻岛宝珠 背包DP

Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 1049 Solved: 605

Description

给你N颗宝石,每颗宝石都有重量和价值。要你从这些宝石中选取一些宝石,保证总重量不超过W,且总价值最大为,并输出最大的总价值。数据范围:N<=100;W<=2^30,并且保证每颗宝石的重量符合a*2^b(a<=10;b<=30)

Input

输入文件中包含多组数据。每组数据的格式如下:第一行是两个正整数n和W,1≤n≤100,1≤W≤2^30,分别表示宝石的数目和最多能带走的宝石重量。接下来的n行,每行有两个正整数weighti和valuei,1≤weighti≤2^30, 0≤valuei≤2^30,分别表示第i颗宝石的重量和价值,且保证weighti能写成a*2^b(1≤a≤10,0≤b≤30)的形式。同一行的两个正整数之间用空格隔开。最后一组数据的后面有两个-1,表示文件的结束。这两个-1并不代表一组数据,你不需对这组数据输出结果。并且输入文件中数据的组数不超过20。

Output

对于输入的每组数据,输出一个整数C,表示小P最多能带走的宝石的总价值。每个结果整数C单独占一行,且保证C不会超过2^30。

Sample Input

4 10

8 9

5 8

4 6

2 5

4 13

8 9

5 8

4 6

2 5

16 75594681

393216 5533

2 77

32768 467

29360128 407840

112 68

24576 372

768 60

33554432 466099

16384 318

33554432 466090

2048 111

24576 350

9216 216

12582912 174768

16384 295

1024 76

-1 -1
Sample Output

14

19

1050650

HINT

Source


dalao讲解

这就是神奇的分层背包???

我们的状态设计为:
…………数位为 9876543210
举个例子 M = 1101010101

则dp[i][j]表示容量为 j2i 加上 i 位以前的所有位的大小,比如说i 5 ,则从左往右数4位的权值直接选入

dp[5][3]表示M为110101时的情况

这样定义之后我们先按照一层一层地DP,把每一层,也就是i相同的情况DP出来,存在dp[i][j]中,注意这个时候dp[i][j]只表示了 j2i 的情况

因此我们在层与层之间处理的时候
top表示m的最大位是第几位
第一层for i 1 top
第二层for j 1000 0
第三层for k 0 j
dp[i][j] = max(dp[i][j], dp[i][ j - k ] + dp[ i - 1 ][ 2 * k + ( m >> ( i - 1 ) ) & 1 ] )
因为我的j是逆序for j的,因此每次用到的情况都是没有用到后面状态的,也即每次都是只是 j2i 的情况来更新的


#include<bits/stdc++.h>
using namespace std;
const int MAXN = 1005;
const int MAXM = 35;
int n, m, cnt[MAXN];
long long dp[MAXM][MAXN];
int main( ) {
    while( scanf( "%d%d", &n, &m ) && n != -1 && m != -1 ) {
        long long ans = 0;
        memset( dp, 0, sizeof(dp) );
        for( register int i = 1; i <= n; i++ ) { int w, v, c = 0;
            scanf( "%d%d", &w, &v );
            while( w % 2 == 0 ) w /= 2, c++;
            for( register int j = 1000; j >= w; j-- ) 
                dp[c][j] = max( dp[c][ j - w ] + v, dp[c][j] );
            cnt[c] += w;
        }
        int top = 0;
        for( register int i = m; i; i >>= 1 ) top++; top--;
        for( register int i = 1; i <= top; i++ ) {
            for( register int j = 1000; j >= 0; j-- ) 
                for( register int k = 0; k <= j; k++ ) 
                    dp[i][j] = max( dp[i][j], dp[i][ j - k ] + dp[ i - 1 ][ min( 1000, ( k * 2 ) + ( m >> ( i - 1 ) & 1 ) ) ] );
        }
        printf( "%lld\n", dp[top][1] );
    }
    return 0;
}

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值