Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 1049 Solved: 605
Description
给你N颗宝石,每颗宝石都有重量和价值。要你从这些宝石中选取一些宝石,保证总重量不超过W,且总价值最大为,并输出最大的总价值。数据范围:N<=100;W<=2^30,并且保证每颗宝石的重量符合a*2^b(a<=10;b<=30)
Input
输入文件中包含多组数据。每组数据的格式如下:第一行是两个正整数n和W,1≤n≤100,1≤W≤2^30,分别表示宝石的数目和最多能带走的宝石重量。接下来的n行,每行有两个正整数weighti和valuei,1≤weighti≤2^30, 0≤valuei≤2^30,分别表示第i颗宝石的重量和价值,且保证weighti能写成a*2^b(1≤a≤10,0≤b≤30)的形式。同一行的两个正整数之间用空格隔开。最后一组数据的后面有两个-1,表示文件的结束。这两个-1并不代表一组数据,你不需对这组数据输出结果。并且输入文件中数据的组数不超过20。
Output
对于输入的每组数据,输出一个整数C,表示小P最多能带走的宝石的总价值。每个结果整数C单独占一行,且保证C不会超过2^30。
Sample Input
4 10
8 9
5 8
4 6
2 5
4 13
8 9
5 8
4 6
2 5
16 75594681
393216 5533
2 77
32768 467
29360128 407840
112 68
24576 372
768 60
33554432 466099
16384 318
33554432 466090
2048 111
24576 350
9216 216
12582912 174768
16384 295
1024 76
-1 -1
Sample Output
14
19
1050650
HINT
Source
dalao讲解
这就是神奇的分层背包???
我们的状态设计为:
…………数位为 9876543210
举个例子 M = 1101010101
则dp[i][j]表示容量为
j∗2i
加上
i
位以前的所有位的大小,比如说
dp[5][3]表示M为110101时的情况
这样定义之后我们先按照一层一层地DP,把每一层,也就是i相同的情况DP出来,存在dp[i][j]中,注意这个时候dp[i][j]只表示了 j∗2i 的情况
因此我们在层与层之间处理的时候
top表示m的最大位是第几位
第一层for i 1 top
第二层for j 1000 0
第三层for k 0 j
dp[i][j] = max(dp[i][j], dp[i][ j - k ] + dp[ i - 1 ][ 2 * k + ( m >> ( i - 1 ) ) & 1 ] )
因为我的j是逆序for j的,因此每次用到的情况都是没有用到后面状态的,也即每次都是只是
j∗2i
的情况来更新的
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 1005;
const int MAXM = 35;
int n, m, cnt[MAXN];
long long dp[MAXM][MAXN];
int main( ) {
while( scanf( "%d%d", &n, &m ) && n != -1 && m != -1 ) {
long long ans = 0;
memset( dp, 0, sizeof(dp) );
for( register int i = 1; i <= n; i++ ) { int w, v, c = 0;
scanf( "%d%d", &w, &v );
while( w % 2 == 0 ) w /= 2, c++;
for( register int j = 1000; j >= w; j-- )
dp[c][j] = max( dp[c][ j - w ] + v, dp[c][j] );
cnt[c] += w;
}
int top = 0;
for( register int i = m; i; i >>= 1 ) top++; top--;
for( register int i = 1; i <= top; i++ ) {
for( register int j = 1000; j >= 0; j-- )
for( register int k = 0; k <= j; k++ )
dp[i][j] = max( dp[i][j], dp[i][ j - k ] + dp[ i - 1 ][ min( 1000, ( k * 2 ) + ( m >> ( i - 1 ) & 1 ) ) ] );
}
printf( "%lld\n", dp[top][1] );
}
return 0;
}