由于建树的时候使用的是深度优先遍历
则子树节点的遍历时间是连续的
所以,可以用线段树解
线段树的l,r表示时间
然后用Lx[x]和Rx[x]来表示进入x子树的时间和出x子树的时间
例题:1466 苹果树
题目描述:在卡卡的房子外面,有一棵苹果树。每年的春天,树上总会结出很多的苹果。卡卡非常喜欢吃苹果,所以他一直都精心的呵护这棵苹果树。我们知道树是有很多分叉点的,苹果会长在枝条的分叉点上面,且不会有两个苹果结在一起。卡卡很想知道一个分叉点所代表的子树上所结的苹果的数目,以便研究苹果树哪些枝条的结果能力比较强。
卡卡所知道的是,每隔一些时间,某些分叉点上会结出一些苹果,但是卡卡所不知道的是,总会有一些调皮的小孩来树上摘走一些苹果。
于是我们定义两种操作:
C x 表示编号为x的分叉点的状态被改变(原来有苹果的话,就被摘掉,原来没有的话,就结出一个苹果)
Q x 查询编号为x的分叉点所代表的子树中有多少个苹果
我们假定一开始的时候,树上全都是苹果,也包括作为根结点的分叉1。
输入:第一行一个数N
接下来n-1行,每行2个数u,v,表示分叉点u和分叉点v是直接相连的。
再接下来一行一个数M表示询问数
接下来M行,表示询问,询问的格式如题目所述Q x或者C x
输出:对于每个Q x的询问,请输出相应的结果,每行输出一个
具体代码实现如下:
/*将树转化成线段树 区间查询 单点更新 */
#include<bits/stdc++.h>
using namespace std;
#define FOR(i,x,y) for(register int i=(x);i<=(y);i++)
#define DOR(i,x,y) for(register int i=(x);i>=(y);i--)
#define M 100005
char C[10];
int F[M],B[M];
int T=0,Lx[M],Rx[M];//有时还要开一个数组来记录时间对应的节点(dfsLine)
int n;
vector<int>v[M];
struct node{int l,r,sum;}tree[M<<2];
void deal(int x,int fa){//在造树的时候同时记录进出时间
B[x]=1;
Lx[x]=++T;
for(int i=0;i<v[x].size();i++){
if(v[x][i]==fa)continue;
F[v[x][i]]=x;
deal(v[x][i],x);
}
Rx[x]=T;
}
void build(int l,int r,int p){
tree[p].l=l,tree[p].r=r;
if(l==r){
tree[p].sum=1;
return;
}
int mid=(l+r)>>1;
build(l,mid,p<<1);
build(mid+1,r,p<<1|1);
tree[p].sum=tree[p<<1].sum+tree[p<<1|1].sum;
}
int query(int l,int r,int p){
if(tree[p].l==l&&tree[p].r==r){
return tree[p].sum;
}
int mid=(tree[p].l+tree[p].r)>>1;
if(mid>=r)return query(l,r,p<<1);
else if(mid<l)return query(l,r,p<<1|1);
else return query(l,mid,p<<1)+query(mid+1,r,p<<1|1);
}
void update(int x,int a,int p){
if(tree[p].l==tree[p].r){
tree[p].sum=a;
return ;
}
int mid=(tree[p].l+tree[p].r)>>1;
if(mid>=x)update(x,a,p<<1);
else update(x,a,p<<1|1);
tree[p].sum=tree[p<<1].sum+tree[p<<1|1].sum;
}
void init(){
cin>>n;
FOR(i,1,n-1){
int x,y;
scanf("%d%d",&x,&y);
v[x].push_back(y);
v[y].push_back(x);
}
deal(1,0);
build(1,n,1);
}
int main(){
init();
int m;
cin>>m;
for(int k=1;k<=m;k++){
int x,d;
scanf("%s%d",C,&x);
if(C[0]=='C'){
B[x]^=1;
update(Lx[x],B[x],1);//更新时传入时间
}
else if(C[0]=='Q')printf("%d\n",query(Lx[x],Rx[x],1));//询问时也传入时间
}
return 0;
}