以下都是互联网目前的主流技术,当你全部掌握上述的这些技术相信你至少也是阿里P6级以上了.
而且你也已经形成了自己的体系,当更加新潮的技术出来时那么你自己稍微花点时间就能吃透.
毕竟那时候你已经不是以前的那个你了,懂底层原理,知道性能特征,以及功能.
想要弄懂新的技术那么也不会太吃力.
一、源码分析 (文末领取)、
源码分析是一种临界知识,掌握了这种临界知识,能不变应万变,源码分析对于很多人来说很枯燥,生涩难懂。
源码阅读,我觉得最核心有三点:技术基础+强烈的求知欲+耐心。
我认为是阅读源码的最核心驱动力。我见到绝大多数程序员,对学习的态度,基本上就是这几个层次(很偏激哦):
只关注项目本身,不懂就baidu一下。
除了做好项目,还会阅读和项目有关的技术书籍,看wikipedia。
除了阅读和项目相关的书外,还会阅读IT行业的书,比如学Java时,还会去了解函数语言,如LISP。
找一些开源项目看看,大量试用第三方框架,还会写写demo。
阅读基础框架、J2EE规范、Debug服务器内核。
大多数程序都是第1种,到第5种不光需要浓厚的兴趣,还需要勇气:我能读懂吗?
其实,你能够读懂的耐心,真的很重要。
因为你极少看到阅读源码的指导性文章或书籍,也没有人要求或建议你读。
你读的过程中经常会卡住,而一卡主可能就陷进了迷宫。
这时,你需要做的,可能是暂时中断一下,再从外围看看它:如API结构、框架的设计图。
下图是我总结出目前最应该学习的源码知识点:
二、分布式架构
分布式系统是一个古老而宽泛的话题,而近几年因为 “大数据” 概念的兴起,又焕发出了新的青春与活力。
除此之外,分布式系统也是一门理论模型与工程技法并重的学科内容。
相比于机器学习这样的研究方向,学习分布式系统的同学往往会感觉:“入门容易,深入难”。
的确,学习分布式系统几乎不需要太多数学知识。
分布式系统是一个复杂且宽泛的研究领域,学习一两门在线课程,看一两本书可能都是不能完全覆盖其所有内容的。
总的来说,分布式系统要做的任务就是把多台机器有机的组合、连接起来,让其协同完成一件任务,可以是计算任务,也可以是存储任务。
如果一定要给近些年的分布式系统研究做一个分类的话.
我个人认为大概可以包括三大部分:
分布式存储系统
分布式计算系统
分布式管理系统
下图是我总结近几年目前分布式最主流的技术:
三、微服务
当前微服务很热,大家都号称在使用微服务架构,但究竟什么是微服务架构?微服务架构是不是发展趋势?
对于这些问题,我们都缺乏清楚的认识。
为解决单体架构下的各种问题,微服务架构应运而生。与其构建一个臃肿庞大、难以驯服的怪兽,还不如及早将服务拆分。
微服务的核心思想便是服务拆分与解耦,降低复杂性。 微服务强调将功能合理拆解,尽可能保证每个服务的功能单一,按照单一责任原则(Single Responsibility Principle)明确角色。 将各个服务做轻,从而做到灵活、可复用,亦可根据各个服务自身资源需求,单独布署,单独作横向扩展。
下图是我总结出微服务需要学习的知识点:
四、性能优化
不管是应付前端面试还是改进产品体验,性能优化都是躲不开的话题。
优化的目的是让用户有“快”的感受,那如何让用户感受到快呢?
加载速度真的很快,用户打开输入网址按下回车立即看到了页面
加载速度并没有变快,但用户感觉你的网站很快
性能优化取决于多个因素,包括垃圾收集、虚拟机和底层操作系统(OS)设置。
有多个工具可供开发人员进行分析和优化时使用,
你可以通过阅读 Java Tools for Source Code Optimization and Analysis 来学习和使用它们。
必须要明白的是,没有两个应用程序可以使用相同的优化方式,也没有完美的优化 java 应用程序的参考路径。
使用最佳实践并且坚持采用适当的方式处理性能优化。
想要达到真正最高的性能优化,你作为一个 Java 开发人员,需要对 Java 虚拟机(JVM)和底层操作系统有正确的理解。
下图是我总结性能优化应该学习理解的几大知识体系:
五、Java工程化
工欲善其事,必先利其器,不管是小白,还是资深开发,都需要先选择好的工具。提升开发效率何团队协作效率。让自己有更多时间来思考。
最后针对知识体系我总结出了互联网公司java程序员面试涉及到的绝大部分面试题及答案做成了文档和架构视频资料免费分享给大家(包括Dubbo、Redis、Netty、zookeeper、Spring cloud、分布式、高并发等架构技术资料),希望能帮助到您面试前的复习且找到一个好的工作,也节省大家在网上搜索资料的时间来学习。
合理利用自己每一分每一秒的时间来学习提升自己,不要再用"没有时间“来掩饰自己思想上的懒惰!趁年轻,使劲拼,给未来的自己一个交代!(记得关注,点赞,分享给个支持)
答案,关注公众号下面二维码,即可