1016D D. Vasya And The Matrix
对于一个n*m的矩阵,给出每行和每列元素的异或和,求原矩阵的一个可能方案。
考虑到异或的一个性质a^b^b=a^0=a,用一行的m-1列和一列的n-1行控制异或值,这一行和这一列的交点处可以通过行或列的异或和以及其他确定的位置计算而来,其余位置都为0。
#include<cstdio>
#include<cstring>
#include<string>
#include<iostream>
#include<vector>
#include<cmath>
#include<queue>
#include<algorithm>
#define maxn 205
#define INF 0x3f3f3f3f
#define eps 1e-8
using namespace std;
typedef unsigned long long ll;
int n,m;
ll a[maxn],b[maxn];
ll ans[maxn][maxn];
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)scanf("%I64d",&a[i]);
for(int i=1;i<=m;i++)scanf("%I64d",&b[i]);
ll tmp=0;
for(int i=1;i<=n;i++)tmp^=a[i];
for(int i=1;i<=m;i++)tmp^=b[i];
if(tmp!=0)
{
printf("NO\n");
return 0;
}
printf("YES\n");
memset(ans,0,sizeof(ans));
for(int i=1;i<n;i++)ans[i][m]=a[i];
for(int i=1;i<m;i++)ans[n][i]=b[i];
ans[n][m]=b[m];
for(int i=1;i<n;i++)ans[n][m]^=ans[i][m];
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
printf(j==m?"%I64d\n":"%I64d ",ans[i][j]);
}
return 0;
}
1016E E. Rest In The Shades
考虑到窗口区间是按顺序给出的,对于每次查询的点,我们可以求出光源始末位置与它连线和x轴的交点。通过预处理区间长度前缀和,可以在二分地找出覆盖的窗口之后求出这个范围内被挡住的长度,但是在覆盖的左右端点处的区间需要单独计算一下重叠的范围。最后再用相似三角形投影到光源的轨迹上即可。
#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
#include <vector>
#include <iostream>
#include <algorithm>
#define maxn 200050
#define INF 0x3f3f3f3f
#define eps 1e-8
using namespace std;
typedef long long ll;
int n, q;
double x, y, sy, sx, ex;
double sum[maxn];
struct node
{
double l, r;
}e[maxn];
int main()
{
scanf("%lf%lf%lf", &sy, &sx, &ex);
scanf("%d", &n);
sum[0] = 0;
for(int i = 1;i <= n;i++)
{
scanf("%lf%lf", &e[i].l, &e[i].r);
sum[i] = sum[i - 1] + (e[i].r - e[i].l);
}
e[0].l = e[0].r = -1.0*INF;
e[n+1].l = e[n+1].r = 1.0*INF;
scanf("%d", &q);
while(q--)
{
scanf("%lf%lf", &x, &y);
double xl = x + (sx - x)*y/(y - sy);
double xr = x + (ex - x)*y/(y - sy);
int L = 0, R = n + 1, ansl = 0, ansr = n + 1;
while(L <= R)
{
int mid = (L + R) >> 1;
if(e[mid].l < xl) L = mid + 1, ansl = mid;
else R = mid - 1;
}
L = 0, R = n + 1;
while(L <= R)
{
int mid = (L + R) >> 1;
if(e[mid].r > xr) R = mid - 1, ansr = mid;
else L = mid + 1;
}
double edit = max(0.0, e[ansl].r - xl) + max(0.0, xr - e[ansr].l);
double ans = (sum[ansr - 1] - sum[ansl] + edit)*(y - sy)/y;
printf("%.8lf\n", ans);
}
return 0;
}