Codeforces EduRound 48 D & E

1016D D. Vasya And The Matrix

对于一个n*m的矩阵,给出每行和每列元素的异或和,求原矩阵的一个可能方案。

考虑到异或的一个性质a^b^b=a^0=a,用一行的m-1列和一列的n-1行控制异或值,这一行和这一列的交点处可以通过行或列的异或和以及其他确定的位置计算而来,其余位置都为0。

#include<cstdio>
#include<cstring>
#include<string>
#include<iostream>
#include<vector>
#include<cmath>
#include<queue>
#include<algorithm>
#define maxn 205
#define INF 0x3f3f3f3f
#define eps 1e-8
using namespace std;
typedef unsigned long long ll;

int n,m;
ll a[maxn],b[maxn];
ll ans[maxn][maxn];

int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)scanf("%I64d",&a[i]);
    for(int i=1;i<=m;i++)scanf("%I64d",&b[i]);
    ll tmp=0;
    for(int i=1;i<=n;i++)tmp^=a[i];
    for(int i=1;i<=m;i++)tmp^=b[i];
    if(tmp!=0)
    {
        printf("NO\n");
        return 0;
    }
    printf("YES\n");
    memset(ans,0,sizeof(ans));
    for(int i=1;i<n;i++)ans[i][m]=a[i];
    for(int i=1;i<m;i++)ans[n][i]=b[i];
    ans[n][m]=b[m];
    for(int i=1;i<n;i++)ans[n][m]^=ans[i][m];
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
            printf(j==m?"%I64d\n":"%I64d ",ans[i][j]);
    }
    return 0;
}

1016E E. Rest In The Shades

考虑到窗口区间是按顺序给出的,对于每次查询的点,我们可以求出光源始末位置与它连线和x轴的交点。通过预处理区间长度前缀和,可以在二分地找出覆盖的窗口之后求出这个范围内被挡住的长度,但是在覆盖的左右端点处的区间需要单独计算一下重叠的范围。最后再用相似三角形投影到光源的轨迹上即可。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
#include <vector>
#include <iostream>
#include <algorithm>
#define maxn 200050
#define INF 0x3f3f3f3f
#define eps 1e-8
using namespace std;
typedef long long ll;

int n, q;
double x, y, sy, sx, ex;
double sum[maxn];
struct node
{
    double l, r;
}e[maxn];

int main()
{
    scanf("%lf%lf%lf", &sy, &sx, &ex);
    scanf("%d", &n);
    sum[0] = 0;
    for(int i = 1;i <= n;i++)
    {
        scanf("%lf%lf", &e[i].l, &e[i].r);
        sum[i] = sum[i - 1] + (e[i].r - e[i].l);
    }
    e[0].l = e[0].r = -1.0*INF;
    e[n+1].l = e[n+1].r = 1.0*INF;
    scanf("%d", &q);
    while(q--)
    {
        scanf("%lf%lf", &x, &y);
        double xl = x + (sx - x)*y/(y - sy);
        double xr = x + (ex - x)*y/(y - sy);
        int L = 0, R = n + 1, ansl = 0, ansr = n + 1;
        while(L <= R)
        {
            int mid = (L + R) >> 1;
            if(e[mid].l < xl) L = mid + 1, ansl = mid;
            else R = mid - 1;
        }
        L = 0, R = n + 1;
        while(L <= R)
        {
            int mid = (L + R) >> 1;
            if(e[mid].r > xr) R = mid - 1, ansr = mid;
            else L = mid + 1;
        }
        double edit = max(0.0, e[ansl].r - xl) + max(0.0, xr - e[ansr].l);
        double ans = (sum[ansr - 1] - sum[ansl] + edit)*(y - sy)/y;
        printf("%.8lf\n", ans);
    }
    return 0;
}

 

CodeForces - 616D是一个关于找到一个序中最长的第k好子段的起始位置和结束位置的问题。给定一个长度为n的序和一个整数k,需要找到一个子段,该子段中不超过k个不同的数字。题目要求输出这个序最长的第k好子段的起始位置和终止位置。 解决这个问题的方法有两种。第一种方法是使用尺取算法,通过维护一个滑动窗口来记录\[l,r\]中不同数的个数。每次如果这个数小于k,就将r向右移动一位;如果已经大于k,则将l向右移动一位,直到个数不大于k。每次更新完r之后,判断r-l+1是否比已有答案更优来更新答案。这种方法的时间复杂度为O(n)。 第二种方法是使用枚举r和双指针的方法。通过维护一个最小的l,满足\[l,r\]最多只有k种数。使用一个map来判断数的种类。遍历序,如果当前数字在map中不存在,则将种类数sum加一;如果sum大于k,则将l向右移动一位,直到sum不大于k。每次更新完r之后,判断i-l+1是否大于等于y-x+1来更新答案。这种方法的时间复杂度为O(n)。 以上是两种解决CodeForces - 616D问题的方法。具体的代码实现可以参考引用\[1\]和引用\[2\]中的代码。 #### 引用[.reference_title] - *1* [CodeForces 616 D. Longest k-Good Segment(尺取)](https://blog.csdn.net/V5ZSQ/article/details/50750827)[target=&quot;_blank&quot; data-report-click={&quot;spm&quot;:&quot;1018.2226.3001.9630&quot;,&quot;extra&quot;:{&quot;utm_source&quot;:&quot;vip_chatgpt_common_search_pc_result&quot;,&quot;utm_medium&quot;:&quot;distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt&quot;}} ] [.reference_item] - *2* [Codeforces616 D. Longest k-Good Segment(双指针+map)](https://blog.csdn.net/weixin_44178736/article/details/114328999)[target=&quot;_blank&quot; data-report-click={&quot;spm&quot;:&quot;1018.2226.3001.9630&quot;,&quot;extra&quot;:{&quot;utm_source&quot;:&quot;vip_chatgpt_common_search_pc_result&quot;,&quot;utm_medium&quot;:&quot;distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt&quot;}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值