HDU 6390 GuGuFishtion (莫比乌斯反演)

莫比乌斯反演是数论中一个著名的内容,可以用来解决很多组合数学方面的问题。

先引入莫比乌斯函数:

\mu (n)=\begin{cases} 1 & \text{ if } n= 1\\ (-1)^{k} & \text{ if } n=p_{1}p_{2}...p_{k},\forall p_{i}\neq p_{j} \\ 0 & \text{ others } \end{cases}

有一个定理:

\sum_{d|n}^{ }\mu (d)=\begin{cases} 1 & \text{ if } n=1 \\ 0 & \text{ if } n>1 \end{cases}

莫比乌斯反演定理的表述为对于f和g两个函数,以下两个式子可以相互推出:

f(n)=\sum_{d|n}^{ } g(d) \Leftrightarrow g(n)=\sum_{d|n}^{ }\mu (d)f(\frac{n}{d})

hdu6390 给定n、m、p,求\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{\varphi (ij)}{\varphi (i)\varphi (j)} 对p取模的值。

尝试对式子进行化简,首先了解欧拉函数的一个性质,如果a是素数p的k次幂,则\varphi (a)=(p-1)p^{k-1}

对于i和j的一个因子p,设x=p^{n},y=p^{m},则有:

\varphi (x)=(p-1)p^{n-1},\varphi (y)=(p-1)p^{m-1},\varphi (xy)=(p-1)p^{n+m-1}

\frac{\varphi (xy)}{\varphi(x)\varphi (y)}=\frac{p}{p-1}=\frac{p^{k}}{(p-1)p^{k-1}}=\frac{p^{k}}{\varphi (p^{k})}

扩展至i和j的所有因数,便有:\frac{\varphi (ij)}{\varphi (i)\varphi (j)}=\frac{p_{1}^{k_{1}}p_{2}^{k_{2}}...p_{n}^{k_{n}}}{\varphi (p_{1}^{k_{1}}p_{2}^{k_{2}}...p_{n}^{k_{n}})}。控制k使得:p_{1}^{k_{1}}p_{2}^{k_{2}}...p_{n}^{k_{n}}=gcd(i,j)

那么:\frac{\varphi (ij)}{\varphi (i)\varphi (j)}=\frac{gcd(i,j)}{\varphi (gcd(i,j))},原问题变成了求\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{gcd(i,j)}{\varphi (gcd(i,j))}

稍作变形,所求的问题即为:

f(n,m)=\sum_{d=1}^{min(n,m)}\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{d}{\varphi (d)}*[gcd(i,j)==d]

f(n,m)=\sum_{d=1}^{min(n,m)}\sum_{i=1}^{n/d}\sum_{j=1}^{m/d}\frac{d}{\varphi (d)}*[gcd(i,j)==1]

g(n,m)=\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==1]

由莫比乌斯反演有:\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==1]= \sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{d|gcd(i,j)}^{ }\mu (d)

g(n,m)=\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==1]= \sum_{d|gcd(i,j)}^{ }\mu (d)*\frac{n}{d}*\frac{m}{d}

f(n,m)=\sum_{d=1}^{min(n,m)}\frac{d}{\varphi (d)}*g(\frac{n}{d},\frac{m}{d})

f(n,m)=\sum_{d=1}^{min(n,m)}\frac{d}{\varphi (d)}\sum_{k=1}^{min(n/d,m/d)}\mu (k)*\frac{n}{dk}*\frac{m}{dk}

/*ргргрг*/
#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
#include <map>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
const int maxn = 1000050;
const int INF = 0x3f3f3f3f;
const double eps = 1e-8;

int t, n, m;
ll mod;
ll eul[maxn], mu[maxn], inv[maxn];

void init()
{
    memset(eul, 0, sizeof(eul));
    eul[1] = mu[1] = 1;
    for(int i = 1;i < maxn;i++) eul[i] = i;
    for(int i = 2;i < maxn;i++)
    {
        if(eul[i] == i)
        for(int j = i;j < maxn;j += i)           
            eul[j] = eul[j]/i*(i - 1);
    }
    for(int i = 1;i < maxn;i++)
    {
        for(int j = 2*i; j < maxn;j += i)
            mu[j] -= mu[i];
    }
}

ll g(int s, int e)
{
    ll res = 0;
    for(int i = 1;i <= min(s, e);i++)
    {
        res += 1LL*mu[i]*(s/i)*(e/i);
        res %= mod;
    }
    return res;
}

int main()
{
    scanf("%d", &t);
    init();
    while(t--)
    {
        scanf("%d%d%lld", &n, &m, &mod);
        inv[1] = 1;
        for(int i = 2;i <= min(n, m);i++)
            inv[i] = inv[mod % i]*(mod - mod/i) % mod;
        ll ans = 0;
        for(int i = 1; i <= min(n, m);i++)
        {
            ans += 1LL*g(n/i, m/i)*(1LL*i*inv[eul[i]]) % mod;
            ans %= mod;
        }
        printf("%lld\n", ans % mod);
    }
    return 0;
}

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值