题目链接 给出一个数列,要求每次单点更新后查询从1开始的严格上升子序列长度。
考虑到严格上升子序列所具有的单调性,我们可以用一棵线段树来维护区间最大值,然后通过相邻区间的最大值关系来确定严格递增序列的长度。
在维护一个区间的时候,显然它的左儿子和右儿子都有一个贡献。如果前一个数比后一个数要大,后一个数显然是不会产生贡献的。因此,一个区间的贡献应该至少是它左儿子的贡献。而对于右儿子产生的贡献,可以分类讨论。
设v为查询时的最大值,如果左儿子区间的最大值不超过v,那么整个区间的贡献就只需要查询右儿子的贡献。否则,就直接在右儿子贡献的基础上再递归地查询此状态下左儿子的贡献。
注意每次更新查询后,要将数组恢复原状。
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <queue>
#include <map>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
const int maxn = 100050;
const ll INF = (1LL << 62) - 1;
const double eps = 1e-8;
int t, n, m, p, x, w[maxn];
struct node
{
int cnt;
int val;
}tree[maxn << 2];
int query(int root, int l, int r, int v)
{
if(l == r) return (tree[root].val > v);
if(tree[root].val <= v) return 0;
int mid = (l + r) >> 1;
if(tree[root*2].val <= v) return query(root*2 + 1, mid + 1, r, v);
else return tree[root].cnt - tree[root*2].cnt + query(root*2, l, mid, v);
}
void build(int root, int l, int r)
{
if(l == r)
{
tree[root].cnt = 1;
tree[root].val = w[l];
return;
}
int mid = (l + r) >> 1;
build(root*2, l, mid);
build(roort*2 + 1, mid + 1, r);
tree[root].cnt = tree[root*2].cnt + query(root*2 + 1, mid + 1, r, tree[root*2].val);
tree[root].val = max(tree[root*2].val, tree[root*2 + 1].val);
}
void update(int root, int l, int r, int aim, int x)
{
if(l == r)
{
tree[root].cnt = 1;
tree[root].val = x;
return;
}
int mid = (l + r) >> 1;
if(aim <= mid) update(root*2, l, mid, aim, x);
else update(root*2 + 1, mid + 1, r, aim, x);
tree[root].cnt = tree[root*2].cnt + query(root*2 + 1, mid + 1, r, tree[root*2].val);
tree[root].val = max(tree[root*2].val, tree[root*2 + 1].val);
}
int main()
{
scanf("%d", &t);
while(t--)
{
scanf("%d%d", &n, &m);
for(int i = 1;i <= n;i++)
scanf("%d", &w[i]);
build(1, 1, n);
for(int i = 1;i <= m;i++)
{
scanf("%d%d", &p, &x);
update(1, 1, n, p, x);
printf("%d\n", tree[1].cnt);
update(1, 1, n, p, w[p]);
}
}
return 0;
}