【python】python腾讯招聘信息数据抓取可视化(源码+数据+论文)【独一无二】

1. 项目概述

通过对Tecent招聘网站的职位数据进行爬取和解析,成功获取了多个职位的详细信息,并将其存储在本地 data.csv 文件中。每条记录包含职位的核心字段:职位 ID、职位名称、地区、岗位类别及岗位职责。这些数据经过清洗和格式化处理,保证了内容的规范性和可读性。从结果来看,爬取到的数据覆盖了不同地区和类别的职位信息,为全面了解腾讯的招聘需求提供了有效支持。此外,通过分页爬取的方式,确保了数据的完整性,避免遗漏重要信息。这些结果为后续的深入分析奠定了基础,比如职位需求的地区分布、岗位职责的关键词分析以及招聘趋势的可视化等。总体而言,采集到的数据能够充分反映腾讯当前的招聘情况,为相关领域的研究与决策提供了可靠依据。

在这里插入图片描述

在这里插入图片描述


2. 源码分析

2. 功能概述

该代码实现了以下功能:

  1. 爬取腾讯招聘官网的职位信息。
  2. 提取关键信息,如职位ID、名称、工作年限、地区、岗位和职责。
  3. 将爬取到的数据写入 data.csv 文件,供后续分析和可视化使用。

3. 核心代码结构分析
3.1 文件初始化
with open("data.csv", "a+", encoding='utf-8') as f:
    f.write(
        "职位ID" + "," + "职位名称" + "," + "工作年限" + "," + "地区" + "岗位" + "," + "职责" + "," + '\n')
  • 打开(或创建)一个 data.csv 文件并添加表头。
  • 表头包括:职位ID职位名称工作年限地区岗位职责
3.2 请求头设置
headers = {
    ...
    "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36"
}
  • 设置了伪装为浏览器的 User-Agent 和其他必要的 HTTP 头字段。
  • 主要用于绕过服务器的反爬虫机制。
3.3 URL 和参数定义
url = "url已隐藏"
  • 爬取目标 API 的接口地址。
params = {
    "timestamp": "1734601759344",
    "countryId": "",
    # 此处略....1",
    ...
    "pageIndex": "{}".format(i),
    "pageSize": "10",
    ...
}
  • 请求参数动态生成:
    • pageIndex 用于分页(爬取多页数据)。
    • 其他参数如 categoryIdarea 用于筛选招聘岗位的类别和地区。
3.4 循环请求与数据提取
for i in range(1, 5):  # 爬取前4页数据
    response = requests.get(url)
    res_data = response.json()
  • 通过 requests.get 发送 HTTP GET 请求,接收 JSON 响应数据。
  • 提取响应数据并解析。

3.5 数据校验与处理
if res_data["Code"] == 200:  # 检查响应状态码
    data = res_data["Data"]["Posts"]
    for msg in data:
        post_id = msg["PostId"]
        post_title = msg["RecruitPostName"]
        RequireWorkYearsName = msg["RequireWorkYearsName"]
        ...
  • 检查返回的状态码是否为 200(成功)。
  • 从响应数据中提取关键字段:
    • PostId:职位ID。
    • RecruitPostName:职位名称。
    • RequireWorkYearsName:工作年限要求。
    • CountryNameLocationName:地区信息。
    • CategoryName:岗位类别。
    • Responsibility:岗位职责。

3.6 数据写入
  • 将提取到的字段以 CSV 格式追加到 data.csv 文件中。
  • responsibility 中替换了换行符和逗号,确保 CSV 格式不被破坏。

4. 功能亮点
  1. 数据格式化:
    • 数据经过清洗(例如去掉职责中的换行符)后以 CSV 格式保存,便于后续分析和可视化。
  2. 分页爬取:
    • 动态调整 pageIndex 参数,实现多页数据的自动爬取。
  3. 健壮性检查:
    • 通过状态码 200 校验接口响应,避免无效数据写入。

5. 改进建议
  1. 异常处理:

    • 为网络请求和文件写入增加异常捕获,防止程序因网络问题或文件问题中断。
    try:
        response = requests.get(url)
        response.raise_for_status()  # 检查HTTP请求状态
    except requests.exceptions.RequestException as e:
        print(f"请求失败:{e}")
    
  2. 数据去重:

    • 在写入前检查是否已存在相同记录,避免重复数据。
  3. 并发爬取:

    • 使用 asynciothreading 实现并发爬取,提升效率。
  4. 数据可视化:

    • 读取 data.csv,使用 pandasmatplotlib 等工具进行分析和可视化。

![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/4201022579c74cc6aacf325fc556ad20.png在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值