项目中跨域问题的解决方案 - Nginx

本文介绍了如何利用Nginx解决跨域问题。首先讲解了Nginx的基本概念,然后通过一个具体的实现场景,说明在访问静态资源时遇到跨域问题,由于无法修改服务器端,选择Nginx作为解决方案。详细描述了下载、启动Nginx以及配置代理的过程,最后解释了Nginx解决跨域的原理,即Nginx没有同源策略。
摘要由CSDN通过智能技术生成

Nginx 概述

nginx是一款开源的HTTP服务器和反向代理服务器,由内核和模块组成,其中内核的作用是,通过查找配置文件将客户端请求映射到一个locationblock(location是Nginx配置中的一个指令,用于URL匹配),而在这个location中所配置的每个指令将会启动不同的模块去完成相应的工作。

具体实现

背景:假设当前在访问 http://localhost:8080/x ,需要获取静态资源 http://10.20.0.10/need.json,直接使用Ajax请求时,会发生跨域问题导致获取失败,打开控制台发现报错信息为 Access to XMLHttpRequest at 'http://10.20.0.10/need.json' from origin 'http://localhost:8080' has been blocked by CORS policy: No 'Access-Control-Allow-Origin' header is present on the requested resource.,此时无法修改服务器端,故采取 Nginx 解决方案

  1. 首先在 Nginx 官网上下载,有 Linux 和 Windows 两种版本,下文以 Windows 版本为例
  2. 下载完成后解压,在cmd窗口中执行 start nginx.exe,此时会有一个黑窗闪过, 然后执行 tasklist /fi "imagename eq nginx.exe" 查看是否成功启动, 若结果如下图则成功
  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像的目标属于哪个类别。 定位问题:确定目标在图像的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值