杨辉三角C语言

描述:

打印杨辉三角

输入描述:

第一行包含一个整数数n。 (1≤n≤30)

输出描述:

包含n行,为杨辉三角的前n行。

例如:

输入:6

输出:

    1
    1    1
    1    2    1
    1    3    3    1  
    1    4    6    4    1
    1    5   10   10    5    1

思路:

很多同学写了2层for循环后,就没然后了。主要是最外层如何打印出1的难度较大。解决了最外层的1之后,内层的数字就可以通过杨辉三角的性质来求出来。

我们还是要利用二维数组,通过找规律来解决。

我们从第0行开始。第0行的1对应的i = 0,j = 0;  第1行的1分别对应的i = 1,j = 0;i = 1, j = 1;  第2行的1分别对应的是i = 2, j = 0; i = 2, j = 2; 这样下去, 我们发现当 i == j 的时候就打印1,还有, 不管i 如何变化,当 j = 0 时也会打印出1,所以  

if((i == j) || j == 0)
			{
				arr[i][j] = 1;
				printf("%d ", arr[i][j]);
			}

解决了外层的1之后,里面的数字就很好解决。如arr[2][1] (也就是数字2) = arr[1][0] + arr[1][1],还是找规律,发现:

arr[i][j] = arr[i - 1][j - 1] + arr[i - 1][j];

那么完整代码如下:

#include<stdio.h>

int main(void)
{
    int n = 0;
    int i = 0, j = 0;
    int arr[30][30] = { 0 };
    scanf("%d", &n);
    for(i = 0; i < n; i++)
    {
        for(j = 0; j <= i; j++)
        {
            if(j == 0 || j == i)
            {
                arr[i][j] = 1;
                printf("%d", arr[i][j]);
            }
            else
            {
                arr[i][j] = arr[i - 1][j - 1] + arr[i - 1][j];
                printf("%d", arr[i][j]);
            }
        }
        printf("\n");
    }
    
    return 0;
}

有的同学可能在某些题目上尝到了一维数组的甜头,想用一维数组来解决这个题。不过,勇气可嘉(0-0)!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值