(力扣每日一题)最长有效括号

本文介绍了如何解决力扣每日一题中的最长有效括号问题,通过四种不同的方法:暴力解法、动态规划、栈以及正向逆向结合法,详细解析了解题思路和代码实现。动态规划方法中,定义dp[i]表示以i结尾的最长有效括号长度,栈方法中,始终保持栈底元素为最后一个未匹配的右括号下标。
摘要由CSDN通过智能技术生成

最长有效括号

给定一个只包含 ‘(’ 和 ‘)’ 的字符串,找出最长的包含有效括号的子串的长度。
示例 1:
输入: “(()”
输出: 2
解释: 最长有效括号子串为 “()”
示例 2:
输入: “)()())”
输出: 4
解释: 最长有效括号子串为 “()()”
解题思路
输入的“(”是否有与之对应的“)”,求最大有效括号长度
方法一:暴力解法
解题思路
1、括号都是成对出现的,最长有效括号数一定是偶数
2、依次遍历当前子串是否为有效子串(从大往小遍历)
3、直到出现符合的子串,返回子串长度
代码

class Solution:
    def longestValidParentheses(self, s: str) -> int:
        #定义函数判断是否为有效子串
        def isValid(x):
        #用栈的方式实现
            stack = []
             for i in range(len(x)):
              #如果当前为左括号将其入栈
                if x[i] == '(':
                    stack.append('(');
               #如果当前为右括号,判断此时栈顶元素是否为左括号,是的话将其弹出,
               #如果不是则当前子串不是有效子串 
                elif stack!=[] and stack[-1] == '(':
                    stack.pop();
                else:
                    return False
            #有效子串栈中元素括号是一一对应的,栈中元素一定为空
            return stack==[]
        
        #主调函数
        if len(s)<2:return 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值