圆括号编码
令S=s1 s2 …sn是一个规则的圆括号字符串。S以2种不同形式编码:
(1)用一个整数序列P=p1 p2 … pn编码,pi代表在S中第i个右圆括号的左圆括号数量。(记为P-序列)
(2)用一个整数序列W=w1 w2 … wn编码,对每一个右圆括号a,从与之匹配的左圆括号开始到a之间的右圆括号的数目用wi表示。(记为W-序列)
例如:
S为:(((()()())))
P-序列 4 5 6 6 6 6
W-序列 1 1 1 4 5 6
编程把一个圆括号串S的P-序列转化为W-序列。
输入格式:
第一行是一个整数t(1<=t<=10),表示测试数据的组数。接下来是每组测试数据。每个测试数据的第1行是一个整数n(1<=n<=20),第2行是一个圆括号串的P-序列,包含n个正整数,以空格隔开。
输出格式:
输出t行,对每个测试数据所表示的P-序列,输出对应的W-序列,占一行,包含n个整数。
输入样例:
3
5
4 5 5 5 5
6
4 5 6 6 6 6
9
4 6 6 6 6 8 9 9 9
输出样例:
1 1 3 4 5
1 1 1 4 5 6
1 1 2 4 5 1 1 3 9
#include<stdio.h>
#include<string.h>
int main()
{
int n, N;
int p[50], w[50];
scanf("%d", &N);
while (N--)
{
scanf("%d", &n);
p[0]=0;
w[0]=0;
for (int i = 1; i <= n; i++) {
scanf("%d", &p[i]);
int j = i - 1;
int number = 1;
//p[i]与p[j]的差值就是二者之间的左括号数量
//对于第i个括号,(假定i>j),这也是它可能的最大的w序列
while (p[i] - p[j] < i - j) {
j--;
number++;
}
w[i] = number;
}
for (int i = 1; i <= n; i++) {
if(i != 1) {
printf(" %d", w[i]);
}
else {
printf("%d", w[i]);
}
}
printf("\n");
}
return 0;
}