机器学习基本概念

1. 什么是机器学习

让机器具备找函数的能力。

1.1 能做那些事情

语音识别、图片识别、游戏决策
在这里插入图片描述

1.2 不同的类别

1.2.1 回归(Regression)

该函数输出标量
在这里插入图片描述

1.2.2 分类(Classification)

给定选项(类),函数输出正确的选项
在这里插入图片描述
输出类别可以有多种(Playing GO)
在这里插入图片描述

1.2.3 结构化学习Structured Learning

创建具有结构的东西(图像、文档)

1.3 什么是model

带有未知参数的函数

x:feature,b、w未知参数

在这里插入图片描述

1.4 什么是loss

loss也是一个函数,输入变为b、w

损失:一组值的好坏。

  1. 表达式
    在这里插入图片描述

  2. MAE与MSE
    在这里插入图片描述

  3. 取均值
    在这里插入图片描述

1.5 优化问题

怎样的w、b 能使loss最小

  1. 梯度下降
    在这里插入图片描述
    我们步幅走多大呢?
    hyperparameters:机器学习中需要自己设定的东西
    在这里插入图片描述

推广
最后找出一组不错的w、b在这里插入图片描述

1.6 机器学习就是这么简单

1.6.1 训练

在这里插入图片描述

2. 模型改进

线性模型太简单了......我们需要更复杂的模式。

2.1 一个更灵活的模型

所有分段线性曲线 = 常数 + 一组
在这里插入图片描述

非分段线性同样适用
在这里插入图片描述

为了获得良好的近似值,我们需要足够的散点。

2.2 Sigmoid函数

上述讲到的蓝色折线,如何表示此函数,我们用一个平滑曲线代替。

S型的函数
在这里插入图片描述

调整不同的b、w 产生不同形状的函数

在这里插入图片描述

2.2.1 更有弹性的新模型

新表达式
在这里插入图片描述

内部实现细节

在这里插入图片描述

数学表达式

在这里插入图片描述

符号替换

r

在这里插入图片描述

a

在这里插入图片描述
y

在这里插入图片描述

2.3 返回 ML 框架

2.3.1 函数未知参数

在这里插入图片描述

第一步

在这里插入图片描述

2.3.2 函数loss

新model,loss计算方法不变

损失是参数的函数
在这里插入图片描述

梯度更新相同

在这里插入图片描述

实际操作

在这里插入图片描述

更多变形

使用不同的激活函数,比如ReLU。

在这里插入图片描述

2.4 deep learning

简洁表达
在这里插入图片描述

神经元、神经网络、隐藏层

在这里插入图片描述

为什么我们想要“深度”网络,而不是“胖”网络?
使用够多的ReLU

overfitting

训练数据更好,看不见的数据更差。

3. 总结

这只是一个概述。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值