文章目录
1. 什么是机器学习
让机器具备找函数的能力。
1.1 能做那些事情
语音识别、图片识别、游戏决策
1.2 不同的类别
1.2.1 回归(Regression)
该函数输出标量。
1.2.2 分类(Classification)
给定选项(类),函数输出正确的选项。
输出类别可以有多种(Playing GO)
1.2.3 结构化学习Structured Learning
创建具有结构的东西(图像、文档)
1.3 什么是model
带有未知参数的函数
x:feature,b、w未知参数
1.4 什么是loss
loss也是一个函数,输入变为b、w
损失:一组值的好坏。
-
表达式
-
MAE与MSE
-
取均值
1.5 优化问题
怎样的w、b 能使loss最小
- 梯度下降
我们步幅走多大呢?
hyperparameters:机器学习中需要自己设定的东西
推广
最后找出一组不错的w、b
1.6 机器学习就是这么简单
1.6.1 训练
2. 模型改进
线性模型太简单了......我们需要更复杂的模式。
2.1 一个更灵活的模型
所有分段线性曲线 = 常数 + 一组
非分段线性同样适用
为了获得良好的近似值,我们需要足够的散点。
2.2 Sigmoid函数
上述讲到的蓝色折线,如何表示此函数,我们用一个平滑曲线代替。
S型的函数
调整不同的b、w 产生不同形状的函数
2.2.1 更有弹性的新模型
新表达式
内部实现细节
数学表达式
符号替换
r
a
y
2.3 返回 ML 框架
2.3.1 函数未知参数
第一步
2.3.2 函数loss
新model,loss计算方法不变
损失是参数的函数
梯度更新相同
实际操作
更多变形
使用不同的激活函数,比如ReLU。
2.4 deep learning
简洁表达
神经元、神经网络、隐藏层
为什么我们想要“深度”网络,而不是“胖”网络?
使用够多的ReLU
overfitting
训练数据更好,看不见的数据更差。
3. 总结
这只是一个概述。