Pta 数据结构 习题3.4 最长连续递增子序列(时间复杂度O(n),空间复杂度O(1))

该算法解决在线性表中查找最长连续递增子序列的问题,采用时间复杂度为O(n),空间复杂度为O(1)的方法。通过记录子序列的尾元素下标和长度,避免使用额外的大数组,简化了问题并提高了效率。
摘要由CSDN通过智能技术生成

题目:给定一个顺序存储的线性表,请设计一个算法查找该线性表中最长的连续递增子序列。例如,(1,9,2,5,7,3,4,6,8,0)中最长的递增子序列为(3,4,6,8)。

输入格式:

输入第1行给出正整数n(≤10e5);第2行给出n个整数,其间以空格分隔。

输出格式:

在一行中输出第一次出现的最长连续递增子序列,数字之间用空格分隔,序列结尾不能有多余空格。

思考:

        一开始,我是准备用数组存放最大子列,但是有两个问题:一是数组的指针是const,需要再额外定义两个指针来表示当前的递增子列和最大的递增子列;二是需要定义两个大数组来存放当前递增子列和最大递增子列。这样问题就会变得很复杂,时间和空间复杂度急剧上升。思考的过程中我想到,所有的子列都可以用一组数字来表示,子列尾元素的下标(或头元素)和子列长度。这样瞬间就豁然开朗,只需要定义两组数字分别用来表示最大递增子列和当前递增子列即可。具体代码如下:

#include<stdio.h>
//想要记录某个子列,并不需要用数组存放整个子列,只需要用两个变量即可
//一个是子列的最右值,一个是子列的长度 
int main()
{
	int n;
	scanf("%d",&n);
	getchar();//存放回车符 
	int a[n];//存放数列 
	if(n==0){		//特殊情况直接终止 
		return 0;
	}
	int i=0;
	for(i=0;i<n;i++){
		scan
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值