动态规划刷题笔记(持续更新)
动规原理
学习/参考视频:
【动态规划专题班】ACM总冠军、清华+斯坦福大神带你入门动态规划算法
解法步骤
1、确定状态
- 确定最后一步
- 化成子问题
2、推出转移方程
3、判断初始条件和边界条件
4、确定计算顺序
练习目录
Leetcode 322.零钱兑换
题目描述:
给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。
你可以认为每种硬币的数量是无限的。
示例 1:
输入:coins = [1, 2, 5], amount = 11
输出:3
解释:11 = 5 + 5 + 1
原题链接:
Leetcode 322.零钱兑换
解题步骤:
1、确定状态
- 确定最后一步:
在本题最优策略的情况下,最后使用的一枚硬币面值是coins[i] - 化成子问题:
那么本题可以化为使用最少的硬币拼出(amount - coins[i])数额
2、推出转移方程
- 数组f[x]的值表示拼出金额X所需要的最少硬币数目
- f[x] = min{ f[x - coins[0]] + 1, f[x - coins[1]] + 1,…, f[x - coins[coins.size() - 1]] + 1 }
3、判断初始条件和边界条件
- f[0] = 0
- 如果当前面额的硬币不能拼出金额Y,则f[Y] = 无穷大
4、确定计算顺序
- 从f[1]开始计算,分别计算f[2]、f[3]、f[4]…f[amount] ,最后的f[amount]就是本题所求答案
代码展示:
class Solution {
public:
int coinChange(vector<int>& coins, int amount) {
vector<int> res(amount+1);
res[0] = 0;
for(int i = 1; i <= amount; i++)
{
res[i] = INT_MAX;
for(int j = 0; j < coins.size(); j++)
{
if(i >= coins[j] && res[i - coins[j]] != INT_MAX)
{
res[i] = min(res[i - coins[j]] + 1, res[i]);
}
}
}
if(res[amount] == INT_MAX)
{
res[amount] = -1;
}
return res[amount];
}
};
时间复杂度分析
假设有N种面额的硬币,现在需要组合出金额M
需要计算f[1]、f[2]、f[3]…f[M],一共是M次计算
而每一次f[x]的计算都需要使用到f[x - coins[0]] 、f[x - coins[1]]…f[x - coins[N-1]],一共是N次
所以总共需要M * N次计算
时间复杂度为 O(M * N)