最大子矩阵

最大子矩阵

总时间限制: 
1000ms 
内存限制: 
65536kB
描述
已知矩阵的大小定义为矩阵中所有元素的和。给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵。

比如,如下4 * 4的矩阵

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2

的最大子矩阵是

9 2
-4 1
-1 8

这个子矩阵的大小是15。
输入
输入是一个N * N的矩阵。输入的第一行给出N (0 < N <= 100)。再后面的若干行中,依次(首先从左到右给出第一行的N个整数,再从左到右给出第二行的N个整数……)给出矩阵中的N 2个整数,整数之间由空白字符分隔(空格或者空行)。已知矩阵中整数的范围都在[-127, 127]。
输出
输出最大子矩阵的大小。
样例输入
4
0 -2 -7 0 9 2 -6 2
-4 1 -4  1 -1

8  0 -2
样例输出
15
#include<stdio.h>
#include<iostream>
using namespace std;
int MaxSum(int n,int a[]){
	int i=0;
	int maxSum=a[0];
	int *dp= new int[n+1];
	dp[0]=a[0];
	for(i=1;i<n;i++){
		dp[i]=dp[i-1]>=0?(dp[i-1]+a[i]):a[i];
		if(dp[i]>maxSum){
			maxSum=dp[i];
		}
	}
	return maxSum;
}

int MaxSum2(int n,int a[][100]){
	int sum=a[0][0];
	int *b = new int[n];
	for(int i=0;i<n;i++){
		for(int k=0;k<n;k++){
			b[k]=0;
		}
		for(int j=i;j<n;j++){
			for(int k=0;k<n;k++){
				b[k]+=a[j][k];
				int max = MaxSum(k+1,b);
				if(max>sum){
					sum=max;
				}
			}
		} 
	}
	return sum;
}
int main()
{
	int a[100][100];
	int n,i,j;
	scanf("%d",&n);
	for(i=0;i<n;i++){
		for(j=0;j<n;j++){
		cin>>a[i][j];
		}
	}
	cout<<MaxSum2(n,a)<<endl;
	return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值