最大子矩阵
-
总时间限制:
- 1000ms 内存限制:
- 65536kB
-
描述
-
已知矩阵的大小定义为矩阵中所有元素的和。给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵。
比如,如下4 * 4的矩阵
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
的最大子矩阵是
9 2
-4 1
-1 8
这个子矩阵的大小是15。
输入
- 输入是一个N * N的矩阵。输入的第一行给出N (0 < N <= 100)。再后面的若干行中,依次(首先从左到右给出第一行的N个整数,再从左到右给出第二行的N个整数……)给出矩阵中的N 2个整数,整数之间由空白字符分隔(空格或者空行)。已知矩阵中整数的范围都在[-127, 127]。 输出
- 输出最大子矩阵的大小。 样例输入
-
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
样例输出
-
15
-
#include<stdio.h> #include<iostream> using namespace std; int MaxSum(int n,int a[]){ int i=0; int maxSum=a[0]; int *dp= new int[n+1]; dp[0]=a[0]; for(i=1;i<n;i++){ dp[i]=dp[i-1]>=0?(dp[i-1]+a[i]):a[i]; if(dp[i]>maxSum){ maxSum=dp[i]; } } return maxSum; } int MaxSum2(int n,int a[][100]){ int sum=a[0][0]; int *b = new int[n]; for(int i=0;i<n;i++){ for(int k=0;k<n;k++){ b[k]=0; } for(int j=i;j<n;j++){ for(int k=0;k<n;k++){ b[k]+=a[j][k]; int max = MaxSum(k+1,b); if(max>sum){ sum=max; } } } } return sum; } int main() { int a[100][100]; int n,i,j; scanf("%d",&n); for(i=0;i<n;i++){ for(j=0;j<n;j++){ cin>>a[i][j]; } } cout<<MaxSum2(n,a)<<endl; return 0; }