2020 hdu Road To The 3rd Building

思路:
方案数是选一颗树到选n棵树(n+1)*n/2,每个方案是所有选法的长度和
看到一个大佬的思路,原来每一段的长度和还能这么算:
k∗sum(1+…n)−前缀和的前缀−后缀和的后缀 原文链接
(如选一颗,长度和就是都选一遍;选两颗,长度和就是除了第1棵和最后1棵选一遍,其余都选两遍)
代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int  mod=1e9+7;
const int N=2e5+10;
ll a[N],num;
ll sum[N],sumk[N],sumx[N],sumy[N];
ll ksm(ll a,ll b){
    ll ans=1;
    a%=mod;
    while(b){
        if(b&1)
        ans=(ll)ans*a%mod;
        a=(ll)a*a%mod;
        b>>=1;
    }
    return ans;
}
int main()
{
    ll t, n, ans;
    scanf("%lld", &t);
    while (t--)
    {
        memset(sum, 0, sizeof sum);
        memset(sumx, 0, sizeof sumx);
        memset(sumy, 0, sizeof sumy);
        memset(sumk, 0, sizeof sumk);
        scanf("%lld", &n);
        ans = 0;
        for (ll i = 1ll; i <= n; i++)
            scanf("%lld", &a[i]), sum[i] = (sum[i - 1ll] + a[i]) % mod;
        for (ll i = 1ll; i <= n; i++)
            sumx[i] = (sumx[i - 1ll] + sum[i]) % mod;
        ll k = n;
        for (ll i = 1ll; i <= n; i++)
            sumy[i] = (sumy[i - 1ll] + a[k]) % mod, k--;
        for (ll i = 1ll; i <= n; i++)
            sumk[i] = (sumk[i - 1ll] + sumy[i]) % mod;
        for (ll i = 1ll; i <= n; i++)
        {
            ans = (ans + ((((i * sum[n] % mod) - sumx[i - 1ll] - sumk[i - 1ll] + mod) % mod) * ksm(i, mod - 2ll) % mod)) % mod;
        }
        ll np = (((n + 1ll) * n) / 2ll) % mod;
        printf("%lld\n", ((ans % mod) * (ksm(np, mod - 2ll) % mod) % mod));
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>