思路:对于第一位数和最后一位数,它们的贡献为(1/1+1/2+…+1/n)*s,对于第二位数和倒数第二位数,它们的贡献为(1/1+2/2+2/3+2/4+…+2/(n-2)+2/(n-1)+1/n)*s,第三位数和倒数第三位数贡献为(1/1+2/2+3/3+3/4+…+3/(n-2)+2/(n-1)+1/n)*s…所以我们可以看出每向里一位到第i位,就是在原有基础上加上1/i+1/(i+1)+…+1/(n-i+1),由于这题需要求逆元,我们只需求出n的阶乘作为分母,创建一个数组c,c[n]s作为第一位数分子,每向里一位在原有基础上进行更新,最后除以n(n+1)/2求逆元即可。
#include <bits/stdc++.h>
#define gcd __gcd
#define endl '\n'
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
const ll maxn = 2e5+5;
const ll mod = 1e9+7;
const int inf=0x7fffffff;
ll n;
ll s[maxn],b[maxn],c[maxn];
ll pow1(ll x,ll y)
{
x%=mod;
ll ans=1;
while(y)
{
if(y&1) ans=ans*x%mod;
x=x*x%mod;
y>>=1;
}
return ans%mod;
}
void init()
{
b[1]=1;
for(ll i=2;i<maxn;i++)
{
b[i]=b[i-1]*i%mod;
}
}
void solve()
{
scanf("%d",&n);
for(ll i=1;i<=n;i++)
{
c[i]=(c[i-1]+b[n]*pow1(i,mod-2)%mod)%mod;
}
for(int i=1;i<=n;i++)
scanf("%lld",&s[i]);
ll l=1,r=n,sum=0,gg=0;
while(l<=r)
{
if(l!=r)
{
gg=(gg+(mod+c[n-l+1]-c[l-1])%mod)%mod;
sum=(sum+gg*(s[l]+s[r])%mod)%mod;
}
else
{
gg=(gg+(mod+c[n-l+1]-c[l-1])%mod)%mod;
sum=(sum+gg*(s[l])%mod)%mod;
}
l++;
r--;
}
printf("%lld\n",sum*2*pow1(b[n+1]*n%mod,mod-2)%mod);
}
int main()
{
int t;
cin>>t;
init();
while(t--)
{
solve();
}
}