HDU 6827 Road To The 3rd Building

在这里插入图片描述在这里插入图片描述
思路:对于第一位数和最后一位数,它们的贡献为(1/1+1/2+…+1/n)*s,对于第二位数和倒数第二位数,它们的贡献为(1/1+2/2+2/3+2/4+…+2/(n-2)+2/(n-1)+1/n)*s,第三位数和倒数第三位数贡献为(1/1+2/2+3/3+3/4+…+3/(n-2)+2/(n-1)+1/n)*s…所以我们可以看出每向里一位到第i位,就是在原有基础上加上1/i+1/(i+1)+…+1/(n-i+1),由于这题需要求逆元,我们只需求出n的阶乘作为分母,创建一个数组c,c[n]s作为第一位数分子,每向里一位在原有基础上进行更新,最后除以n(n+1)/2求逆元即可。

#include <bits/stdc++.h>
#define gcd __gcd
#define endl '\n'
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
const ll maxn = 2e5+5;
const ll mod = 1e9+7;
const int inf=0x7fffffff;
ll n;
ll s[maxn],b[maxn],c[maxn];
ll pow1(ll x,ll y)
{
	x%=mod;
	ll ans=1;
	while(y)
	{
		if(y&1) ans=ans*x%mod;
		x=x*x%mod;
		y>>=1;
	}
	return ans%mod;
 }
void init()
{
	b[1]=1;
	for(ll i=2;i<maxn;i++)
	{
		b[i]=b[i-1]*i%mod;
	}
}
void solve()
{
	scanf("%d",&n);
	for(ll i=1;i<=n;i++)
	{
		c[i]=(c[i-1]+b[n]*pow1(i,mod-2)%mod)%mod;
	}
	for(int i=1;i<=n;i++)
	scanf("%lld",&s[i]);
	ll l=1,r=n,sum=0,gg=0;
	while(l<=r)
	{
		if(l!=r)
		{
			gg=(gg+(mod+c[n-l+1]-c[l-1])%mod)%mod;
			sum=(sum+gg*(s[l]+s[r])%mod)%mod;
		}
		else
		{
			gg=(gg+(mod+c[n-l+1]-c[l-1])%mod)%mod;
			sum=(sum+gg*(s[l])%mod)%mod;
		}
		l++;
		r--;
	}
	printf("%lld\n",sum*2*pow1(b[n+1]*n%mod,mod-2)%mod);
}
int main()
{
	int t;
	cin>>t;
	init();
	while(t--)
	{
		solve();
	 } 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>