中国剩余定理

因为在《孙子算经》中有提到,所以也叫孙子定理

  • 引入

不知道同学们是否遇到了这种方程:

可能有的人会说,啊这什么啊,有的人就会说这不中国剩余定理吗?
没错这就是要用中国剩余定理解决的同余方程

  • 为了求得这种一次的线性的同余方程的通解,就有了中国剩余定理(前提是 m 1 m_1 m1, m 2 m_2 m2 m n m_n mn两两互质,一般 m 1 m_1 m1, m 2 m_2 m2,…, m n m_n mn为质数)

下面给出通解:

我们设:
M = m 1 M=m_1 M=m1 × \times × m 2 m_2 m2 × \times × × \times × m n m_n mn= ∏ i = 1 n m i \prod\limits_{i=1}^nm_i i=1nmi
M i = M / m i M_i=M/m_i Mi=M/mi , ∀ i ∈ { 1 , 2 , . . . , n } \forall i\in\{1,2,...,n\} i{1,2,...,n}
t i = M i − 1 ( 仅 当 m o d   m i 下 时 t i 时 M i 的 倒 数 ) t_i=M_i^{-1}(仅当mod\ m_i下时t_i时M_i的倒数) ti=Mi1(mod mitiMi)
即: t i M i ≡ 1 ( m o d m i ) t_iM_i\equiv1\pmod{m_i} tiMi1(modmi) , ∀ i ∈ { 1 , 2 , . . . , n } \forall i\in\{1,2,...,n\} i{1,2,...,n}
解得: x = a 1 t 1 M 1 + a 2 t 2 M 2 + . . . + a n t n M n + k M = ∑ i = 1 n a i t i M i + k M x=a_1t_1M_1+a_2t_2M_2+...+a_nt_nM_n+kM=\sum\limits_{i=1}^na_it_iM_i+kM x=a1t1M1+a2t2M2+...+antnMn+kM=i=1naitiMi+kM, k k k为任意整数
且因为 M ∣ k M M|kM MkM,所以 m o d M mod M modM的意义下有唯一解 x = ( ∑ i = 1 n a i t i M i ) m o d    M x=(\sum\limits_{i=1}^na_it_iM_i)\mod{M} x=(i=1naitiMi)modM

下面给出证明:

∵ m 1 , m 2 , . . . m n 两 两 互 质 \because m_1,m_2,...m_n两两互质 m1,m2,...mn
∴ g c d ( m i , M i ) = 1 , 即 M i 与 m i 互 质 \therefore gcd(m_i,M_i)=1,即M_i与m_i互质 gcd(mi,Mi)=1,Mimi
∴ 总 有 整 数 解 t i 使 得 t i M i + x m i = 1 ( 好 像 是 裴 蜀 定 理 ) , 又 可 写 成 : t i M i ≡ 1 ( m o d m i ) \therefore 总有整数解t_i使得t_iM_i+xm_i=1(好像是裴蜀定理),又可写成:t_iM_i\equiv1 \pmod{m_i} ti使tiMi+xmi=1(),:tiMi1(modmi)
∴ a i t i M i ≡   a i × 1 ≡   a i ( m o d m i ) \therefore a_it_iM_i\equiv\ a_i \times 1 \equiv\ a_i\pmod{m_i} aitiMi ai×1 ai(modmi)
同时我们发现:假设 ∀ j ∈ { 1 , 2 , . . . , n } 且 j ≠ i \forall j\in \{1,2,...,n\}且j\ne i j{1,2,...,n}j=i
此时: M i = m 1 × m 2 × . . . × m j × . . . × m n M_i=m_1\times m_2\times...\times m_j\times...\times m_n Mi=m1×m2×...×mj×...×mn,即: m j ∣ M i m_j|M_i mjMi
∴ a i t i M i ≡ 0 ( m o d m j ) \therefore a_it_iM_i\equiv0\pmod{m_j} aitiMi0(modmj)
解得一个 x x x为: x = a 1 t 1 M 1 + a 2 t 2 M 2 + . . . + a n t n M n x=a_1t_1M_1+a_2t_2M_2+...+a_nt_nM_n x=a1t1M1+a2t2M2+...+antnMn
代入原方程验证: { x = a 1 t 1 M 1 + ∑ j ≠ 1 a j t j M j ≡ a 1 × 1 + ∑ j ≠ 1 0 ≡ a 1 ( m o d m 1 ) x = a 2 t 2 M 2 + ∑ j ≠ 2 a j t j M j ≡ a 2 × 1 + ∑ j ≠ 2 0 ≡ a 2 ( m o d m 2 ) . . . x = a i t i M i + ∑ j ≠ i a j t j M j ≡ a i × 1 + ∑ j ≠ i 0 ≡ a i ( m o d m i ) . . . . x = a n t n M n + ∑ j ≠ n a j t j M j ≡ a n × 1 + ∑ j ≠ n 0 ≡ a n ( m o d m n ) \begin{cases}x=a_1t_1M_1+\sum\limits_{j\ne 1}a_jt_jM_j\equiv a_1\times 1+\sum\limits_{j\ne 1}0\equiv a_1\pmod{m1}\\x=a_2t_2M_2+\sum\limits_{j\ne2}a_jt_jM_j\equiv a_2\times 1+\sum\limits_{j\ne2}0\equiv a_2\pmod{m_2}\\...\\x=a_it_iM_i+\sum\limits_{j\ne i}a_jt_jM_j\equiv a_i\times 1+\sum\limits_{j\ne i}0\equiv a_i\pmod{m_i}\\....\\x=a_nt_nM_n+\sum\limits_{j\ne n}a_jt_jM_j\equiv a_n\times 1+\sum\limits_{j\ne n}0\equiv a_n\pmod{m_n}\end{cases} x=a1t1M1+j=1ajtjMja1×1+j=10a1(modm1)x=a2t2M2+j=2ajtjMja2×1+j=20a2(modm2)...x=aitiMi+j=iajtjMjai×1+j=i0ai(modmi)....x=antnMn+j=najtjMjan×1+j=n0an(modmn)
我们假设此方程有2个解分别为: x 1 , x 2 且 x 1 > x 2 x_1,x_2且x_1>x_2 x1,x2x1>x2
∴ { x 1 ≡ a i ( m o d m i ) x 2 ≡ a i ( m o d m i ) \therefore\begin{cases} x_1\equiv a_i\pmod{m_i}\\x_2\equiv a_i\pmod{m_i}\end{cases} {x1ai(modmi)x2ai(modmi)
∴ x 1 − x 2 ≡ 0 ( m o d m i ) , 即 : m i ∣ x 1 − x 2 \therefore x_1-x_2\equiv0\pmod{m_i},即:m_i|x_1-x_2 x1x20(modmi),:mix1x2
∵ M = ∏ i = 1 n m i ∴ M ∣ x 1 − x 2 \because M=\prod\limits_{i=1}^nm_i\therefore M|x_1-x_2 M=i=1nmiMx1x2
∴ 解 集 为 x ∈ { ∑ i = 1 n a i t i M i + k M \therefore 解集为x\in\{\sum\limits_{i=1}^na_it_iM_i+kM x{i=1naitiMi+kM, k 为 任 意 整 数 } k为任意整数\} k}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值