题目链接在这里
题目大意:
要将p个居民连接起来使他们可以通话,现在有s个卫星设备,拥有卫星设备的居民之间可以任意通话,其他的居民只能在距离D之内进行通话。现在给出p个居民的坐标,求D最小为多少。
解题思路:
s个卫星最多可以构成s - 1条边。我们暴力算出来居民之间两两之间的距离,然后构建一个最小生成树。将最小生成树用到的边存起来并从大到小排个序,前s - 1个边就用卫星通话就行了,第s个边就是答案。
注意double输出的时候是%.2f,不是%.2lf。
代码如下:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <queue>
#define rep(i, x) for(int i = 0; i < x; ++i)
#define clr(x) memset(x, 0, sizeof(x))
using namespace std;
const int MaxN = 510;
struct Edge{
int x, y;
double val;
bool operator < (const Edge &e) const{
return val > e.val;
}
}edge[MaxN];
int t;
int s, p;
int x[MaxN], y[MaxN];
int par[MaxN], r[MaxN];
int Find(int x){
if(x == par[x]) return x;
return par[x] = Find(par[x]);
}
void unite(int x, int y){
x = Find(x);
y = Find(y);
if(x == y) return;
if(r[x] < r[y]) par[x] = y;
else{
par[y] = x;
if(r[x] == r[y]) ++r[x];
}
}
bool check(int x, int y){
return Find(x) == Find(y);
}
double getDis(int i, int j){
int x1 = x[i];
int y1 = y[i];
int x2 = x[j];
int y2 = y[j];
return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));
}
bool cmp(Edge e1, Edge e2){
return e1.val > e2.val;
}
void solve(){
--s;
priority_queue<Edge> que;
rep(i, p){
rep(j, i){
que.push(Edge{i, j, getDis(i, j)});
}
}
int tmp = p - 1;
int cnt = 0;
while(tmp--){
Edge e = que.top();
que.pop();
if(check(e.x, e.y)){
++tmp;
continue;
}
unite(e.x, e.y);
edge[cnt++] = e;
}
sort(edge, edge + cnt, cmp);
printf("%.2f\n", edge[s].val);
}
int main(){
scanf("%d", &t);
while(t--){
scanf("%d %d", &s, &p);
clr(r);
rep(i, MaxN) par[i] = i;
rep(i, p){
scanf("%d %d", &x[i], &y[i]);
}
solve();
}
return 0;
}