TonyY是一个喜欢到处浪的男人,他的梦想是带着兰兰姐姐浪遍天朝的各个角落,不过在此之前,他需要做好规划。
现在他的手上有一份天朝地图,上面有n个城市,m条交通路径,每条交通路径都是单行道。他已经预先规划好了一些点作为旅游的起点和终点,他想选择其中一个起点和一个终点,并找出从起点到终点的一条路线亲身体验浪的过程。但是他时间有限,所以想选择耗时最小的,你能告诉他最小的耗时是多少吗?
Input
包含多组测试数据。
输入第一行包括两个整数n和m,表示有n个地点,m条可行路径。点的编号为1 - n。
接下来m行每行包括三个整数i, j, cost,表示从地点i到地点j需要耗时cost。
接下来一行第一个数为S,表示可能的起点数,之后S个数,表示可能的起点。
接下来一行第一个数为E,表示可能的终点数,之后E个数,表示可能的终点。
0<S, E≤n≤100000,0<m≤100000,0<cost≤100。
输出他需要的最短耗时。
4 4 1 3 1 1 4 2 2 3 3 2 4 4 2 1 2 2 3 4Sample Output
1
思路:比赛时想的是既然s个起点,那每个起点都跑一遍spfa然后遍历找到终点最短的路程即可。但是这样的复杂度太高了,应该是会超时的,没想到后台数据不大,这样写竟然过了,哈哈哈
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<queue>
#include<stack>
#include<math.h>
using namespace std;
#define inf 0x3f3f3f3f
const int N=1e5+10;
int m,n,a[N],b[N],dis[N],tot,head[N],sa[N],sb[N],s1,s2;
bool vis[N];
struct node
{
int v,dis,net;
}e[N];
void add(int a,int b,int c)
{
e[tot].v=b;
e[tot].dis=c;
e[tot].net=head[a];
head[a]=tot++;
}
void spfa(int st)
{
memset(dis,0x3f,sizeof(dis));
memset(vis,false,sizeof(vis));
queue<int>q;
dis[st]=0;
vis[st]=true;
q.push(st);
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=false;
for(int j=head[u];j!=-1;j=e[j].net)
{
int v=e[j].v,dist=e[j].dis;
if(dis[v]>dis[u]+dist)
{
dis[v]=dis[u]+dist;
if(!vis[v])
{
vis[v]=true;
q.push(v);
}
}
}
}
}
int main()
{
int u,v,wt;
while(~scanf("%d%d",&n,&m))
{
int ans=inf;
tot=0;
memset(head,-1,sizeof(head));
while(m--)
{
scanf("%d%d%d",&u,&v,&wt);
add(u,v,wt);
}
scanf("%d",&s1);
for(int i=0;i<s1;i++)
scanf("%d",&sa[i]);
scanf("%d",&s2);
for(int i=0;i<s2;i++)
scanf("%d",&sb[i]);
for(int i=0;i<s1;i++)
{
spfa(sa[i]);
for(int j=0;j<s2;j++)
ans=min(ans,dis[sb[j]]);
}
printf("%d\n",ans);
}
}
那这题的正解是什么呢?那就是添加一个超级起点和一个超级终点,让所有可能的起点到超级起点的距离都为0,所有可能的终点到超级终点的距离都为0,然后只要跑一遍spfa找到超级起点到超级终点的最短时间就是我们所要的答案了
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<queue>
#include<stack>
#include<math.h>
using namespace std;
#define inf 0x3f3f3f3f
const int N=1e5+10;
int m,n,a[N],b[N],dis[N],tot,head[N],sa[N],sb[N],s1,s2;
bool vis[N];
struct node
{
int v,dis,net;
}e[N*10];
void add(int a,int b,int c)
{
e[tot].v=b;
e[tot].dis=c;
e[tot].net=head[a];
head[a]=tot++;
}
void spfa()
{
memset(dis,0x3f,sizeof(dis));
memset(vis,false,sizeof(vis));
queue<int>q;
dis[0]=0;
vis[0]=true;
q.push(0);
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=false;
for(int j=head[u];j!=-1;j=e[j].net)
{
int v=e[j].v,dist=e[j].dis;
if(dis[v]>dis[u]+dist)
{
dis[v]=dis[u]+dist;
if(!vis[v])
{
vis[v]=true;
q.push(v);
}
}
}
}
printf("%d\n",dis[n+1]);
}
int main()
{
int u,v,wt;
while(~scanf("%d%d",&n,&m))
{
tot=0;
memset(head,-1,sizeof(head));
while(m--)
{
scanf("%d%d%d",&u,&v,&wt);
add(u,v,wt);
}
scanf("%d",&s1);
for(int i=0;i<s1;i++)
{
scanf("%d",&sa[i]);
add(0,sa[i],0);//超级起点到所有可能起点的时间为0
}
scanf("%d",&s2);
for(int i=0;i<s2;i++)
{
scanf("%d",&sb[i]);
add(sb[i],n+1,0);//所有可能终点到超级终点的时间为0
}
spfa();
}
}