自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 资源 (1)
  • 收藏
  • 关注

原创 【论文速递】ECCV2022 - MOTR:使用Transformer进行端到端多目标跟踪

物体的时间建模是多目标跟踪(MOT)中的一个关键挑战。现有的方法通过基于运动和外观相似度启发式来关联检测结果进行跟踪。关联的后处理性质阻止了视频序列中时间变化的端到端利用。本文中,我们提出了MOTR,它扩展了DETR[6]并引入了“track query(跟踪查询)”来模拟整个视频中的跟踪实例。跟踪查询会逐帧地进行传输和更新,以便随时间进行迭代预测。我们提出了跟踪器感知的标签分配方法来训练跟踪查询和新出现的物体查询。我们进一步提出了时间聚合网络和集体平均损失来增强时间关系建模。

2023-02-20 19:50:13 780

原创 【论文速递】QARepVGG:一种量化感知方案让RepVGG再次伟大

性能和推理速度之间的权衡对于实际应用是至关重要的。结构重参数化实现了更好的权衡,它正成为现代卷积神经网络中日益流行的组成部分。但是当需要INT8推理时,结构重参数化方法的量化性能通常太差,无法部署(例如,在ImageNet上top-1的精度下降超过20%)。在本文中,我们深入研究了这种量化掉点问题的潜在机制,其中原有模块的设计不可避免地扩大了量化误差。我们提出了一个简单、稳健和有效的补救方法,以具有量化友好的结构,也具有重参数化的好处。我们的方法极大地弥补了RepVGG的INT8和FP32精度之间的差距。

2023-02-19 20:25:57 1165

原创 【论文速递】CVPR2022 - MixFormer:使用迭代混合注意进行端到端跟踪

跟踪通常使用多阶段的特征提取、目标信息整合和边界框估计pipeline。为了简化这一pipeline,统一特征提取和目标信息整合的过程,我们提出了一个以transformer为基础的紧凑跟踪框架,称为Mixformer。我们的核心设计是利用注意力操作的灵活性,提出了一个混合注意模块(MAM),用于同时进行特征提取和目标信息集成。该同步建模方案允许提取特定目标的鉴别特征,并在目标和搜索区域之间进行广泛的通信。

2023-02-12 17:14:34 1095

原创 【论文速递】CVPR2022 - DanceTrack:相似外观和多样化运动中的多目标跟踪

多目标跟踪(MOT)的一个典型流程是使用检测器进行目标定位,然后使用re-ID进行目标关联。这个流程的部分动机是由于最近在目标检测和re-ID方面的进展,部分动机是由于现有跟踪数据集的偏差,其中大多数目标倾向于有区别的外观,而re-ID模型足以建立关联。为了应对这种偏差,我们想再次强调的是,当目标外观不能足够区分时,多目标跟踪的方法也应该起作用。为此,我们提出了一个用于多人类跟踪的大规模数据集,其中人类有相似的外观,不同的运动和极端的相互遮挡。

2023-02-08 20:17:02 708

原创 【论文速递】ECCV2022 : 实现目标跟踪的大一统

目标跟踪作为计算机视觉中的一个重要领域,已经形成了两个独立的场景,分别研究单对象跟踪(SOT)和多对象跟踪(MOT)。然而,由于两种任务的训练数据集和跟踪对象的不同,目前的一种跟踪场景的方法不容易适应另一种跟踪场景。虽然UniTrack [45]证明了可以使用具有多个头部的共享外观模型来处理单个跟踪任务,但它没有利用大规模跟踪数据集进行训练,并且在单目标跟踪上表现较差。在这项工作中,我们提出了统一transformer跟踪器(UTT),以解决不同场景下的跟踪问题。

2023-02-01 14:25:40 792 1

原创 【论文速递】CVPR2022 : 用于目标跟踪的统一transformer跟踪器

我们提出了一种统一的方法,称为 Unicorn,它可以使用相同的模型参数同时解决四个跟踪问题(SOT、MOT、VOS、MOTS)。由于目标跟踪问题本身的碎片定义,大多数现有的跟踪器被开发用于解决单个或部分任务,并对特定任务的特征进行过度优化。相比之下,Unicorn提供了一个统一的解决方案,在所有跟踪任务中采用相同的输入、主干、嵌入和头部。这是第一次完成了跟踪网络架构和学习范式的巨大统一。

2023-01-29 19:58:22 1290

原创 【论文速递】CVPR2022 - MeMOT: 带有记忆得到多目标跟踪

我们提出了一种在线跟踪算法,该算法在一个通用框架下执行目标检测和数据关联,能够在长时间跨度后连接对象。这是通过保留一个大的时空内存来存储被跟踪对象的 identity embeddings,并根据需要自适应地引用和聚合内存中的有用信息。我们的模型被称为MeMOT,由三个主要模块组成,它们都是基于transformer的:1)假设生成(Hypothesis Generation),在当前视频帧中产生目标proposals;2)记忆编码(Memory Encoding),从内存中提取每个被跟踪对象的核心信息;

2023-01-19 20:24:19 795

原创 【论文速递】ECCV2022 - ByteTrack:通过关联每个检测盒来进行多对象跟踪

多目标追踪(MOT)的目的是估计视频中目标的边界框和id。大多数方法是通过关联分数高于阈值的检测框来获得id的。检测置信度较低的物体,例如被遮挡的物体,会被简单地去除,这就带来了不可忽略的真实目标漏检和轨迹碎片化。为了解决这个问题,我们提出了一种简单、有效和通用的关联方法,通过关联几乎所有的检测框而不是只关联高分的检测框进行跟踪。对于低分检测框,我们利用它们与轨迹的相似性来恢复真正的物体并过滤掉背景检测框。当应用于9个不同的最先进的跟踪模型时,我们的方法在IDF1得分上取得了一致的改进,范围从1到10个点。

2023-01-17 20:24:17 368

原创 【论文速递】CVPR2022 - 全局跟踪Transformers

本文提出一种新的基于transformer的全局多目标跟踪体系结构。该网络以短时间的帧序列作为输入,并为所有object产生全局轨迹。其核心组件是global track transoformer,它对序列中所有帧的object进行操作。transformer对所有帧中的对象特征进行编码,并使用 trajectory queries将它们分组为轨迹。trajectory queries是来自单个帧的object特征,自然会产生独特的轨迹。

2023-01-16 16:46:27 884 2

原创 win10+ubuntu18.04双系统+cuda9.0+cudnn7.0.5+tensorflow1.9+pycharm+anaconda踩坑指南(不断更新ing)

电脑:联想拯救者isk-15 8g+128g固态+1T机械 gtx960m显卡 预装系统:win10 本人之前毫无基础,一切从0开始入门,大概花了4个晚上的时间配置完了全部内容,期间每天被新冒出的bug折磨的痛不欲生。现在记录一下一路踩过的坑(渣渣排版请见谅)一.ubuntu双系统1.我之前装过wsl,也装过虚拟机里的ubuntu,图形界面都带有卡顿,不好用(关键都不支持gpu版本的t...

2018-09-09 16:25:35 302

stm32 42步进电机

stm32f427的HAl库程序,程序判断行程开关是否被触发,然后通过两个a4988模块驱动两个步进电机

2018-06-08

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除