- 博客(103)
- 资源 (1)
- 收藏
- 关注
原创 卸载Linux 内核 以及NVIDIA驱动
2. 列出已安装的内核,此命令将列出所有已安装的 Linux 内核镜像。此命令将显示当前正在使用的内核版本。卸载NVIDIA 驱动。
2024-09-17 11:06:29 588
原创 关于癌细胞MR的几种类型,T1,T2,DCE,DWI,ADC
综合利用以上不同类型的MRI图像,医生可以获得关于肿瘤的详细信息,包括其位置、大小、形态、血管供应情况、细胞密度等,从而制定更有效的诊断和治疗方案。同时,需要注意的是,最终的诊断和治疗决策应该基于综合考虑MRI结果、临床病史、实验室检查等多方面信息。在癌细胞检测中,不同类型的磁共振成像(MRI)可以提供不同的信息,有助于医生更全面地评估肿瘤的特性和生长情况。
2023-10-25 14:56:53 1085
原创 全卷积网络和卷积网络区别
全卷积网络(Fully Convolutional Network,FCN)和卷积神经网络(Convolutional Neural Network,CNN)是两种常见的神经网络架构,它们在设计和应用上有一些区别。总的来说,全卷积网络是卷积神经网络的一种扩展,主要用于图像分割任务,能够对任意尺寸的输入图像进行像素级别的预测。而卷积神经网络则更广泛地应用于图像分类、目标检测和图像识别等任务,对输入图像的尺寸有一定的限制。
2023-08-04 11:32:32 765
原创 Deep Learing之深度网络与传统的区别以及卷积神经网络的关键想法
而深度学习可以通过网络来拟合特征可以避免这种问题,因为深度学习通过多层结构从原始数据中得到的特征可以同时提高特征的区分选择性和特征不变形,而且可微小细节的特征进行区分,如从白色的狼中区分出萨摩耶犬,同时忽略背景、亮度、姿势等特征。池化:卷积层的作用是探测上一层特征的局部连接,然而池化层的作用是在语义上把相似的特征合并起来,池化操作让这些特征对各种变化具有更好的鲁棒性;权值共享:每一层的特征图使用的过滤器是相同的,不同层使用不同的滤波器;多层网络的使用:通过多层网络实现对低级特征的组合,转换为高级的特征。
2023-06-23 16:24:11 347
原创 医学图像挑战
神经网络的早期层捕获可归一化的低级图像特征(图像边缘),后面的层捕获更高级的或者特定于任务的细节(细节特征)。2 微调,用预训练模型进行医学图像训练,调整最后几层和输出层。1 预训练在数据集的自然图像上,目的提取图像特征。转换是否符合现实场景以及能否达到增强目的。两个微调的方法:调整全部的网络层。增强后的数据必须符合原有标签。设置不同任务的损失函数。
2023-04-09 11:07:49 158
原创 医学图像数据集的挑战
当患者存在多个不同数据时划分数据集应避免随机划分,避免同一个患者的数据出现在训练集,验证集,测试集。使用按患者划分数据集根据合理。采用顺序为测试集,验证集,训练集(在数据不平衡也能进行训练)共识投票:由三名医学专家进行投票,多数服从少数确定最终结果。集采用:测试集或者验证出现数据不平衡问题。额外检查:通过其他医学检查确定。
2023-04-09 11:04:33 174 1
原创 LeTeX 快速入门
LaTeX是一种用于排版专业外观文档的工具。然而,LaTeX的操作模式与您可能使用过的许多其他文档制作应用程序(如Microsoft Word或LibreOffice Writer)截然不同:这些“所见即所得”工具为用户提供了一个交互式页面,用户可以在其中键入和编辑文本,并应用各种形式的样式。LaTeX的工作方式非常不同:相反,您的文档是一个纯文本文件,中间穿插着用于表达所需(排版)结果的LaTeX命令。
2023-04-08 20:54:45 1557
原创 读取nii文件
解决方法:因为 sitk.ReadImage(filename)读取的对象是image对象,需要进行转换。sitk.GetArrayFromImage(img_obj)可以获取数据,nii文件还有空间信息等可以image的 GetOrigin(),GetSpacing(),GetDirection()方法获取。解决方法:最简单是办变量除以1.0,原来变量就会变成浮点数现在image,label都是(768,26,768),目标形状为(26,768,768)
2022-11-26 14:40:03 584
原创 OSError: [WinError 1455] 页面文件太小,无法完成操作。
注意:1 需要明白是那个驱动器,不要甚至错了。2 自定义大小需要根据可用大小进行设置。解决方法:通过高级系统设置里面的高级修改虚拟内存大小。
2022-10-02 18:57:08 319
原创 pixel acc 、mean acc、 IU、 FWIU (pixel accuracy 、mean accuraccy 、mean IU 、frequency weighted IU)
segmentation net metrics
2022-09-30 11:04:56 437
原创 failed to solve with frontend dockerfile.v0: failed to create LLB definition: failed to do request
docker
2022-08-13 15:30:59 3184 4
原创 Keras实战入门
keras 安装首先安装anaconda,因为keras是在TensorFlow基础上再封装的框架。需要再anaconda环境里面安装TensorFlow。最后安装keras。注意:TensorFlow、Keras、Python版本兼容问题。线性回归
2022-06-04 11:13:51 380 1
原创 U-net源码部署
环境准备:Python versions 3.6Tensorflow=2.6Keras =2.6要想使用Jupyter运行需要安装Jupyter遇到问题:ModuleNotFoundError: No module named ‘skimage’解决方案:pip install scikit-images # 默认是国外服务器下载速度比较慢 pip install scikit-image -i https://pypi.tuna.tsinghua.edu.cn/simple # 切换
2022-05-30 14:30:31 274
原创 Yolov5s网络结构
model( (model): Sequential( (0): Focus( (conv): Conv( (conv): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
2022-04-25 22:39:36 2674
原创 使用正则批量修改文件名
import osimport repath = "./data/test"path_list = os.listdir(path) # 获取当前文件下所有文件for path_name in path_list: dir_path = path + "/" + path_name # 拼接老路径 new_pn = re.sub("[\u4e00-\u9fa5]" ,"",path_name) # 使用正则表达式去除含有汉字 new_dp = path + "/"
2022-04-23 07:00:00 715
原创 docker 镜像常见命令和配置加速器
镜像常见命令docker search registry配置加速器创建etc/docker/daemon.json{ “registry-mirrors” :["加速网站"]}科大镜像:https://docker.mirrors.ustc.edu.cn/网易:https://hub-mirror.c.163.com/阿里云:https://<你的ID>.mirror.aliyuncs.com七牛云加速器:https://reg-mirror.qiniu.com重启
2022-04-22 07:00:00 158
原创 python爬虫正则表达式flask
bs = BeatutifulSoup(解析内容, 解析格式)bs. 标签名 # 拿到标签bs.标签名.string # 只拿内容Tag :标签及其内容,拿到它所找到的第一个内容NavigableString : 标签里面的内容 , (字符串)Beautiful Soup: 整个文档Comment : 一个特殊的NavigableString,输出内容不包括注释正则表达式sqlite3的使用...
2022-04-21 09:44:32 241
原创 docker入门命令行使用
Linux 安装docker进入容器 docker exec -it ef34f4dffb31 /bin/bashlocation = /50x.html {root /usr/share/nginx/html;}wegt 下载文件docker commit :从容器创建一个新的镜像。docker commit [OPTIONS] CONTAINER [REPOSITORY[:TAG]]...
2022-04-21 09:40:44 242
原创 OSError---pycharm 给图片添加文字报错
解决方法: fontText = ImageFont.truetype("LPRNet/data/NotoSansCJK-Regular.ttc", textSize, encoding="utf-8")修改路径即可。当读取文件出错是,1 找出正确的相对路径(提高扩展性) 2 使用绝对路径,简单粗暴。
2022-04-12 17:53:04 552
原创 车牌识别之预处理(灰度化,去噪,二值化,分割)
灰度化灰度即R=G=B 二值化只取255 0对图片进行灰度化处理,目的是 1 减少数据量 (减少不明显) 2 为二值化准备对数据进行灰度发现数据量减少并不明显 尤其是 最大 和 平均 灰度法 权重法数据量减少明显 但是权重不容易处理(权重需要自己去调整到自己想要的)python 二值化代码1. 使用cv2方法(注意cv2读取图片是BGR通道,保存的图片时单通道)def gray_cv(img): img2 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
2022-04-11 22:26:15 13519
原创 tensor-CIFAR10数据集加载及模型搭建
本次案例是CIFAR10from torchvision import datasetsfrom torchvision import transformsfrom torch.utils.tensorboard import SummaryWriterimport ssl # 取消认证ssl._create_default_https_context = ssl._create_unverified_context # 没有数据集进行下载时候需要取消认证,不然无法下载trans_com
2022-03-18 17:29:28 1244
原创 tensor-入门教程(加载数据 tensorboard 数据转换 图片操作)
PIL读取图片from PIL import Imagebee = Image.open(r"../data_set/train/ants_image/0013035.jpg")"""open() Opens and identifies the given image file. This is a lazy operation; this function identifies the file, but the file remains open and the actual
2022-03-15 18:24:43 2736
原创 机器学习-猫狗识别(入门案例)
案例分析:下载猫狗图片,进行分类。对数据进行分类,训练集和测试集。训练集和测试集都进行命名规范,把猫标记为1,狗标记为0。处理流程: 数据处理,把数据处理为64X64大小的格式,参数初始化分被初试化 各层权重 W 和 偏置 b,(一般情况下W进行随机赋值,b赋值为1),前向传播,确定激活函数(浅层选择tanh函数,深层选择ReLu),交叉熵损失,反向传播(梯度下降),更新参数,构建神经网络,训练进行测试,进行优化(后面还会更新的)。导包引用:import osfrom PIL import Ima
2022-03-14 19:39:28 13204 3
原创 YOLOv5 - AssertionError: Image not Found
出现上图原因是val 路径还有中文,cv.imread()不能识别。解决方法:1 修改还有中文的文件名2 使用绝对路径,把测试图片放在含有中文的文件里面。下图的名称也无法读取,可能是含有(),重新修改图片名称。...
2022-03-10 22:21:55 7091 5
原创 机器学习-大数据集处理(随机梯度下降和Mapreduce)
Stochastic gradient descent (随机梯度下降)Mini-batch fradient descent (最小批梯度下降)减少映射
2022-03-08 11:31:57 2763
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人