Day25-Task122.买股票的最佳时机

题目描述

122.买卖股票的最佳时机Ⅱ

给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例1

输入: [7,1,5,3,6,4]
输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。

示例2

输入: [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。

示例3

输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。

题目来源: 122.买股票的最佳时机

解题思路

对于买股票的最佳时机Ⅱ,不同与Ⅰ和Ⅲ,这次的题目对于买卖次数没有明确要求,因此我们可以最大化的进行买卖来使得利润最大化。
在这里插入图片描述
如图所示,假设我们在任意相邻两天都进行交易,那么交易结果总会有两种

  • prices[i+1]-prices[i] <= 0(不收入或收入为负)
  • prices[i+1]-prices[i] > 0

因此在七天内每天都进行交易,最终获得的利润为:

  • profit = Σ(prices[i+1]-prices[i])(i 表示第 i 天,i > 0)

根据这一公式,当我们想要将利润最大化的时候,只需将全部 prices[i+1]-prices[i] 大于0的情况加起来,而忽略 prices[i+1]-prices[i] 小于等于零的情况。这样最终获得的利润即为最大利润。

贪心思想: 对于每一步都对其选择最优情况(每一次交易都选择收入为正的情况进行累加),从而的到最终的最优结果。
时间复杂度: O(n)

代码如下:
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        if(prices.size()==0)    return 0;
        int profit=0;
        for(int i=0;i<prices.size()-1;i++)
        {
            if(prices[i+1]>prices[i])
            {
                profit+=prices[i+1]-prices[i];
            }
        }
        return profit;
    }
};
执行结果

在这里插入图片描述

发布了31 篇原创文章 · 获赞 0 · 访问量 763
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 1024 设计师: 上身试试

分享到微信朋友圈

×

扫一扫,手机浏览