poj 1088

    很经典的记忆化搜索题。设状态dp[i][j]为图中第i行第j个坐标所能到达的最远距离,然后用dfs进行记忆化搜索即可。此题同时可以看成是一个二维的序列,找出其中的最长递减子序列。

     以下是用记忆化搜索方法做出的代码;

 

  1. #include<cstdio>
    #include<cstring>
    #include<iostream>
    using namespace std;
    const int M=110;
    const int inf=1<<29;
    int max(int a,int b) {return a>b?a:b;}
  2. int dir[4][2]={-1,0,1,0,0,-1,0,1};
    int dp[M][M];
    int map[M][M];
    int r,c;
  3. bool check(int a,int b)
    {
     if(0<=a && a<r && 0<=b && b<c)
      return true;
     else
      return false;
    }
  4. void dfs(int x,int y)
    {
     int i,j;
     for(i=0;i<4;i++)
     {
      int x1=x+dir[i][0];
      int y1=y+dir[i][1];
      if(check(x1,y1) && map[x][y]>map[x1][y1])
      {
       if(dp[x1][y1]==1)
       {
        dfs(x1,y1);
        dp[x][y]=max(dp[x][y],dp[x1][y1]+1);
       }
       else
       {
        dp[x][y]=max(dp[x][y],dp[x1][y1]+1);
       }
      }
     }
    }
  5. int main()
    {
     while(scanf("%d%d",&r,&c)==2)
     {
      int i,j,k;
      int ans=0;
      for(i=0;i<r;i++)
      {
       for(j=0;j<c;j++)
       {
        scanf("%d",&map[i][j]);
        dp[i][j]=1;
       }
      }
      for(i=0;i<r;i++)
      {
       for(j=0;j<c;j++)
       {
        if(dp[i][j]==1)
        {
         for(k=0;k<4;k++)
         {
          int x=i+dir[k][0];
          int y=j+dir[k][1];
          if(check(x,y) && map[i][j]>map[x][y])
          {
           if(dp[x][y]==1)
           {
            dfs(x,y);
            dp[i][j]=max(dp[i][j],dp[x][y]+1);
           }
           else
           {
            dp[i][j]=max(dp[i][j],dp[x][y]+1);
           }
          }
         }
        }
        if(dp[i][j]>ans) ans=dp[i][j];
       }
      }
      printf("%d/n",ans);
     }
        return 0;
    }

   这里有个牛人的链接,讲的就是看成最长递减子序列的解法:

http://www.cppblog.com/abilitytao/archive/2010/11/25/74271.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值