二叉树
概念
一棵二叉树是结点的一个有限集合,该集合或者为空,或者是由一个根节点加上两棵别称为左子树和右子树的二叉树组成。
二叉树的特点:
- 每个结点最多有两棵子树,即二叉树不存在度大于 2 的结点。
- 二叉树的子树有左右之分,其子树的次序不能颠倒,因此二叉树是有序树。
特殊的二叉树
- 满二叉树: 一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是2k-1 ,则它就是满二叉树。
- 完全二叉树: 完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
二叉树的性质
- 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2i-1 (i>0)个结点。
- 若规定只有根节点的二叉树的深度为1,则深度为K的二叉树的最大结点数是2k-1 (k>=0)。
- 对任何一棵二叉树, 如果其叶结点个数为 n0, 度为2的非叶结点个数为 n2,则有n0=n2+1。
- 具有n个结点的完全二叉树的深度k为log2(n+1)上取整。
- 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为i
的结点有:
若i>0,双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
若2i+1<n,左孩子序号:2i+1,否则无左孩子
若2i+2<n,右孩子序号:2i+2,否则无右孩子
二叉树的存储
二叉树的存储结构分为:顺序存储和类似于链表的链式存储。
顺序存储
使用数组保存二叉树结构,方式即将二叉树用层序遍历方式放入数组中。一般只适合表示完全二叉树,因为非完全二叉树会有空间的浪费。
顺序存储的特点:
如果已知双亲(parent)的下标,则:
左孩子(left)下标 = 2 * parent + 1
右孩子(right)下标 = 2 * parent + 2
已知孩子(不区分左右)(child)下标,则:
双亲(parent)下标 = (child - 1) / 2
;
链式存储
二叉树的链式存储是通过一个一个的节点引用起来的,常见的表示方式有二叉和三叉表示方式,具体如下:
// 孩子表示法
class Node {
int val; // 数据域
Node left; // 左孩子的引用,一般代表左孩子为根的整棵左子树
Node right; // 右孩子的引用,一般代表右孩子为根的整棵右子树
}
// 孩子双亲表示法
class Node {
int val; // 数据域
Node left; // 左孩子的引用,一般代表左孩子为根的整棵左子树
Node right; // 右孩子的引用,一般代表右孩子为根的整棵右子树
Node parent; // 当前节点的根节点
}
二叉树的基本操作
遍历
所谓遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。访问结点所做的操作依赖于具体的应用问题(比如:打印节点内容、节点内容加1)。 遍历是二叉树上最重要的操作之一,是二叉树上进行其它运算之基础。
三种遍历方式
- NLR:前序遍历(Preorder Traversal )——访问根结点—>根的左子树—>根的右子树。
//前序遍历(递归)
public void preOrderTraversal(Node root) {
if (root == null) {
return;
}
System.out.print(root.val + " ");
preOrderTraversal(root.left);
preOrderTraversal(root.right);
}
//前序遍历(非递归)
public void preOrderTraversalNor(Node root) {
if(root == null) {
return;
}
Stack<Node> stack = new Stack<>();
Node cur = root;
while(cur != null || !stack.isEmpty()) {
while(cur != null) {
System.out.print(cur.val + " ");
stack.push(cur);
cur = cur.left;
}
Node top = stack.pop();
cur = top.right;
}
}
- LNR:中序遍历(Inorder Traversal)——根的左子树—>根节点—>根的右子树。
//中序遍历(递归)
public void inOrderTraversal(Node root) {
if(root == null) {
return;
}
inOrderTraversal(root.left);
System.out.print(root.val + " ");
inOrderTraversal(root.right);
}
//中序遍历(非递归)
public void inOrderTraversalNor(Node root){
if(root == null) {
return;
}
Stack<Node> stack = new Stack<>();
Node cur = root;
while(cur != null || !stack.isEmpty()) {
while(cur != null) {
stack.push(cur);
cur = cur.left;
}
Node top = stack.pop();
System.out.print(top.val + " ");
cur = top.right;
}
}
- LRN:后序遍历(Postorder Traversal)——根的左子树—>根的右子树—>根节点。
//后序遍历(递归)
public void postOrderTraversal(Node root) {
if(root == null) {
return;
}
postOrderTraversal(root.left);
postOrderTraversal(root.right);
System.out.print(root.val + " ");
}
//后序遍历(非递归)
public void postOrderTraversalNor(Node root) {
if(root == null) {
return;
}
Stack<Node> stack = new Stack<>();
Node cur = root;
Node prev = root;//记录之前打印过的元素
while(cur != null || !stack.isEmpty()) {
while(cur != null) {
stack.push(cur);
cur = cur.left;
}
cur = stack.peek();
if(cur.right == null || cur.right == prev) {
stack.pop();
System.out.print(cur.val + " ");
prev = cur;
cur = null;
}else {
cur = cur.right;
}
}
}
二叉树的层序遍历
public void levelOrderTraversal(Node root) {
if(root == null) {
return;
}
Queue<Node> queue = new LinkedList<>();
queue.offer(root);
while(!queue.isEmpty()) {
Node cur = queue.poll();
System.out.print((char)cur.val + " ");
if(cur.left != null) {
queue.offer(cur.left);
}
if(cur.right != null) {
queue.offer(cur.right);
}
}
System.out.println();
}