Problem Description
寒假的时候,ACBOY要去拜访很多朋友,恰巧他所有朋友的家都处在坐标平面的X轴上。ACBOY可以任意选择一个朋友的家开始访问,但是每次访问后他都必须回到出发点,然后才能去访问下一个朋友。
比如有4个朋友,对应的X轴坐标分别为1, 2, 3, 4。当ACBOY选择坐标为2的点做为出发点时,则他最终需要的时间为 |1-2|+|2-2|+|3-2|+|4-2| = 4。
现在给出N个朋友的坐标,那么ACBOY应该怎么走才会花费时间最少呢?
Input
输入首先是一个正整数M,表示M个测试实例。每个实例的输入有2行,首先是一个正整数N(N <= 500),表示有N个朋友,下一行是N个正整数,表示具体的坐标(所有数据均<=10000).
Output
对于每一个测试实例,请输出访问完所有朋友所花的最少时间,每个实例的输出占一行。
Sample Input
2
2
2 4
3
2 4 6
Sample Output
2
4
解析
题目要求是“ACBOY可以任意选择一个朋友的家开始访问”,提前对数据排下序,然后只要找到n/2个数据点,在该点作为出发点的结果就是最小。
代码
#include <iostream>
#include <stdlib.h>
#include <math.h>
#include<algorithm>
using namespace std;
int cmp(int a, int b)
{
return a<b;
}
int main()
{
int a[505];
int M;
cin>>M;
while(M--)
{
int n;
cin>>n;
int min=0;
int temp = n/2;
int i,j;
for(i = 0; i < n; i++)
{
cin>>a[i];
}
sort(a, a+n, cmp);
for(i = 0; i < n; i++)
{
min += abs(a[temp]-a[i]);
}
cout<<min<<endl;
}
return 0;
}