学习http://user.qzone.qq.com/289065406/blog/1304863551写的很详细的报告
学会用间接的方式来转化求解概率的问题,这里是要求求解在满足每个队至少解决一道题目,并且有人完成n题的概率,
细心读题还能发现这里有一个坑,n和m可以是不同的,之前一直不知道WA了很久,后面看了别人解题博客才恍然大悟,接着分析
题目的数量为m,至少完成1题且其中有队伍能完成n题,那么仔细想想,也就是:所有队伍至少完成1题的概率 - 所有队伍完成1-n-1题的概率;
前者与后者是包含关系,将共同的部分减掉必然就是有完成n道题的队伍的情况,这里就可以得到基本思想了。
那么实施的具体方案就应该能想到这里涉及多种状态下的概率,用dp状态来表示是再好不过的了,由于涉及队伍标号,题目数,完成数;
那么可想而知就应该是一个三维的数组,也就是dp[i][j][k]的由来, 同时后面我们发现在n与m不同的时候,计算至少完成一个题目还行,
但要求解所有队伍完成1-n-1题的情况就需要统计,将do[i][m][1-n-1]都累加起来,这里为了方便还得再设计一个二维状态s[i][j]含义如定义解释
剩下的问题就明朗了。
*/
#include<cstdio>
#include<cstring>
using namespace std;
double dp[1003][33][33];//dp[i][j][k]代表第i个队前j道题做对k道的概率
double p[1003][33];
double s[1003][33];//s[i][j]第i个队至少pass j个题以内的概率
int n,m,t;
void init(){
for(int i=1; i<=t; i++){
dp[i][0][0]=1;
for(int j=1; j<=m; j++)
dp[i][j][0] = dp[i][j-1][0]*(1-p[i][j]);
for(int j=1; j<=m; j++)
for(int k=1; k<=j; k++)
dp[i][j][k]=dp[i][j-1][k-1]*p[i][j]+dp[i][j-1][k]*(1-p[i][j]);
s[i][0] = dp[i][m][0];
for(int j=1; j<=m; j++)
s[i][j] = s[i][j-1] + dp[i][m][j];
}
}
int main(){
double ans;
while(scanf("%d %d %d",&m,&t,&n)!=EOF){
if(m==0&&n==0&&t==0)
break;
for(int i=1; i<=t; i++)
for(int j=1; j<=m; j++)
scanf("%lf",&p[i][j]);
init();
double p1=1.0,p2=1.0;//p1代表n题至少做对一道题的概率, p2代表做对1~n-1道题的概率
for(int i=1; i<=t; i++){
p1*=(s[i][m]-s[i][0]);//p1的是m,而p2的是n-1这里是有区别的,也就是为什么要使用s[i][j]来统计的原因,就是用来处理m!=n的情况
p2*=(s[i][n-1]-s[i][0]);
}
printf("%.3lf\n",p1-p2);
}
return 0;
}