poj2151

11 篇文章 0 订阅

学习http://user.qzone.qq.com/289065406/blog/1304863551写的很详细的报告

   学会用间接的方式来转化求解概率的问题,这里是要求求解在满足每个队至少解决一道题目,并且有人完成n题的概率,
   细心读题还能发现这里有一个坑,n和m可以是不同的,之前一直不知道WA了很久,后面看了别人解题博客才恍然大悟,接着分析
   题目的数量为m,至少完成1题且其中有队伍能完成n题,那么仔细想想,也就是:所有队伍至少完成1题的概率 - 所有队伍完成1-n-1题的概率;
   前者与后者是包含关系,将共同的部分减掉必然就是有完成n道题的队伍的情况,这里就可以得到基本思想了。
   那么实施的具体方案就应该能想到这里涉及多种状态下的概率,用dp状态来表示是再好不过的了,由于涉及队伍标号,题目数,完成数;
   那么可想而知就应该是一个三维的数组,也就是dp[i][j][k]的由来, 同时后面我们发现在n与m不同的时候,计算至少完成一个题目还行,
   但要求解所有队伍完成1-n-1题的情况就需要统计,将do[i][m][1-n-1]都累加起来,这里为了方便还得再设计一个二维状态s[i][j]含义如定义解释
   剩下的问题就明朗了。
*/      
#include<cstdio>
#include<cstring>

using namespace std;

double dp[1003][33][33];//dp[i][j][k]代表第i个队前j道题做对k道的概率
double p[1003][33];
double s[1003][33];//s[i][j]第i个队至少pass j个题以内的概率

int n,m,t;

void init(){
    for(int i=1; i<=t; i++){
        dp[i][0][0]=1;
        for(int j=1; j<=m; j++)
            dp[i][j][0] = dp[i][j-1][0]*(1-p[i][j]);
        
       for(int j=1; j<=m; j++)
            for(int k=1; k<=j; k++)
               dp[i][j][k]=dp[i][j-1][k-1]*p[i][j]+dp[i][j-1][k]*(1-p[i][j]);

        s[i][0] = dp[i][m][0];
        for(int j=1; j<=m; j++)
           s[i][j] = s[i][j-1] + dp[i][m][j];        
    }
}

int main(){
    double ans;
    while(scanf("%d %d %d",&m,&t,&n)!=EOF){
         if(m==0&&n==0&&t==0)
              break;
         for(int i=1; i<=t; i++)
            for(int j=1; j<=m; j++)
                scanf("%lf",&p[i][j]);

         init();
         double p1=1.0,p2=1.0;//p1代表n题至少做对一道题的概率, p2代表做对1~n-1道题的概率

         for(int i=1; i<=t; i++){
            p1*=(s[i][m]-s[i][0]);//p1的是m,而p2的是n-1这里是有区别的,也就是为什么要使用s[i][j]来统计的原因,就是用来处理m!=n的情况
            p2*=(s[i][n-1]-s[i][0]);
         }
         printf("%.3lf\n",p1-p2);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值