- 博客(6)
- 收藏
- 关注
原创 Mathtype编辑器快捷输入方法
公式编辑器快捷输入方法一、常见的数学符号的快捷键(Ctrl是王道)1. 根式 、分式及上下标2、括号快捷键3、希腊字母4、数学符号5、不等式6、数学公式7、向量8、积分9、放大或缩小尺寸,只是显示,并不改变字号10、空格和加粗11、更改样式(如果你要问如何
2018-01-31 10:47:47 1544
原创 Parzen Window and Likelihood
Kernel density estimation via the Parzen-Rosenblatt window methodGenerative Adversarial Nets codeNice explanation对Ian提到的采用Gassian Parzen Window 去拟合G产生的样本并估计对数似然性(即给予观察样本,判断模型正确的可能性)如何实现的原理很感兴趣?
2018-01-30 23:05:04 5111
翻译 Numpy高维数据的理解
Numpy高维数据的理解当实际处理多维变量时,尤其需要使用到Tensorflow这样深度学习库,比如,图片数据批次其形状为:N×H×W×CN \times H \times W \times C, 高维序列格式存在难以理解的问题。因此如何读懂这些高维序列是一个很基础的问题。列表和1-D Numpy array 如何检索一个列表中的元素,上图给出了很好的描述在python中定义
2018-01-11 20:27:36 4267 6
原创 图示理解卷积运算、逆卷积运算、Tensorflow、tf.nn.conv2d_transpose、Conv2DSlowBackpropInput: Size of out_backprop doesn
一步一步从原理层来解释Tensorflow内卷积层参数设置、Conv2DSlowBackpropInput: Size of out_backprop doesn't match computed错误原因详解
2018-01-10 11:04:51 3835 1
原创 Deconvolution, transpose_convolution,一步一步解释逆卷积
一步一步解释逆卷积:上图中图像大小为2x2,卷积核大小(kernel size)为3x3, 步长(strides)为2,填充(padding)1;那么逆卷积操作:将原始图像的一个像素乘上卷积窗,移动一个步长,将重叠的区域作叠加运算。注意的是:在卷积中,卷积核大小只影响视野大小,与特征的提取的细腻程度有关系;而步长决定了卷积后的空间
2018-01-09 21:34:53 5141 3
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人