C++ | 仿函数与priority_queue

本文介绍了C++中的仿函数(对象函数),它通过重载()操作符实现类似函数的功能,对比了函数指针。接着讲解了优先级队列,即堆数据结构,包括大堆和小堆的概念,以及堆的存储结构和节点关系。文章还展示了如何使用std::priority_queue以及自定义的堆模拟实现,并提供了相关代码示例。
摘要由CSDN通过智能技术生成

目录

前言

一、初始仿函数

1、仿函数是什么

2、仿函数的使用 

二、优先级队列

1、 优先级队列的基本概念

2、堆的储存结构与结点之前关系

3、堆的使用

4、堆的模拟实现


前言

        本文主要介绍优先级队列与仿函数,优先级队列实际上是我们在数据结构中学的堆;在介绍优先级队列之前,我们必须的初步的认识学习一下什么叫仿函数,与仿函数的使用;

一、初始仿函数

1、仿函数是什么

        仿函数实际上是一个重载了()的类;仿函数也叫对象函数;我们通过对象访问成员函数的方式调用函数;与其相对的是C语言的函数指针,因为C语言的函数指针在某些情况下太过于复杂,于是C++设计出了仿函数;

2、仿函数的使用 

        我们通过一下代码来学习仿函数的定义与使用; 

#include <functional>
// 带模板参数的仿函数
template<class T>
struct Greater
{
	// 重载()
	bool operator()(const T& x, const T& y)
	{
		return x > y;
	}
};

void test_func()
{
	int x = 3;
	int y = 10;
	// 创建一个仿函数对象
	Greater<int> Gre;
	// 通过对象调用仿函数
	cout << Gre(x, y) << endl;
	// 通过匿名对象调用仿函数
	cout << Greater<int>()(x, y) << endl;
}
int main()
{
	test_func();
	return 0;
}

        我们通过重载对象里的圆括号,来实现用对象来模拟函数功能;而我们的优先级队列也巧妙的使用了仿函数,来实现通过模板参数控制我们实现的是大堆还是小堆;

二、优先级队列

1、 优先级队列的基本概念

        优先级队列在数据结构中又被称为堆,堆是一种完全二叉树结构;分为大堆与小堆;

大堆:父节点大于子节点

小堆:父节点小于父节点

        大小堆并没有要求左右孩子大小顺序,也就是说在任意堆中,左孩子可能大于右孩子,也可能小于右孩子;

2、堆的储存结构与结点之前关系

        一般情况下,我们用顺序结构储存堆,通过下标关系来定位孩子与父亲之间的关系;

父亲下标 = (孩子下标 - 1)/ 2

左孩子下标 = (父亲下标 * 2) + 1

右孩子下标 = (父亲下标 * 2) + 2

        我们可以通过下图尝试使用以上规则是否适用;

3、堆的使用

堆有如下几个接口;使用成本也不高;

void test_priority_queue()
{
	// 创建优先级队列
	std::priority_queue<int, vector<int>, greater<int>> pq;
	// 插入数据
	pq.push(13);
	pq.push(17);
	pq.push(23);
	pq.push(27);
	pq.push(33);
	pq.push(35);
	pq.push(43);
	pq.push(47);
	pq.push(54);
	pq.push(56);
	// 判空
	while (!pq.empty())
	{
		// 获得堆顶数据
		cout << pq.top() << " ";
		// 取出堆顶数据
		pq.pop();
	}
	cout << endl;

}

4、堆的模拟实现

        堆的模拟实现也不是很难,与前面的stack与queue一样,堆也是适配器容器,我们仅仅只需实现向上调整与向下调整两个接口即可,其他接口均复用;

#include <vector>
#include <functional>

namespace MySpace
{
	template<class T, class Container = std::vector<T>, class Compara = std::less<T>>
	class priority_queue
	{
	private:
		void adjust_up(size_t child)
		{
			// 计算父节点下标
			size_t parent = (child - 1) / 2;
			// 假若孩子结点已经为根节点了,则无法继续向上调整了
			while (child > 0)
			{
				// 通过仿函数比较父节点与子节点的大小关系
				if (Compara()(_con[parent], _con[child]))
				{
					// 条件满足,交换两个结点的值
					std::swap(_con[child], _con[parent]);
					// 计算下一个父节点,查看是否还需要向上调整
					child = parent;
					parent = (child - 1) / 2;
				}
				else // 否则退出循环,调整完毕
				{
					break;
				}
			}
		}
		void adjust_down(size_t parent)
		{
			// 计算孩子结点的下标
			size_t child = parent * 2 + 1;
			// 如果孩子结点大于最后一个数据的下一个位置的下标直接退出循环
			while (child < _con.size())
			{
				// 查看右孩子是否存在,若存在,是否比左孩子大或小
				if (child + 1 < _con.size() && Compara()(_con[child], _con[child + 1]))
				{
					child++;
				}
				// 拿大的(小的)那个孩子进行比较,查看是否需要交换
				if (Compara()(_con[parent], _con[child]))
				{
					// 交换父节点与子节点的数据
					std::swap(_con[child], _con[parent]);
					// 跟新父节点与子节点下标
					parent = child;
					child = parent * 2 + 1;
				}
				else
				{
					break;
				}
			}
		}
	public:
		void push(const T& val)
		{
			_con.push_back(val);
			adjust_up(_con.size() - 1);
		}
		void pop()
		{
			std::swap(_con[0], _con[_con.size() - 1]);
			_con.pop_back();
			adjust_down(0);
		}
		size_t size()
		{
			return _con.size();
		}
		bool empty()
		{
			return _con.empty();
		}
		const T& top() const
		{
			return _con.front();
		}
	private:
		Container _con;
	};

}

        在push函数中,我们插入一个数据会插入到尾部,此时我们需要向上调整,使堆重新恢复堆结构;

        我们结合前面的知识,计算出父节点的下标,依次通过仿函数比较是否需要进行调整数据;关于向下调整,具体思路也一样,代码有具体注释;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值