树与二叉树的基本概念

树的基本概念

树(tree)是n(n>=0)个结点的有限集,它或是一颗空树(n=0),空树中不包含任何结点,或是一颗非空树(n>0),此时有且仅有一个特定的称为根(root)的结点。当n>1时,其余结点可分为m(m>0)个互补相交的有限集T1,T2,…Tm,其中每一个本身又是一棵树,并且称为根的子树(sub tree)。

结点的度与树的度

结点拥有的子树的数目称为结点的度(Degree),度为0的结点称为叶子(leaf)或终端结点。度不为0的结点称为非终端结点或分支节点。除根之外的分支结点也成为内部结点。树内各结点的度的最大值称为树的度。

结点的层次和树的深度

结点的层次(level)从根开始定义,层次树为1的结点是根节点,其子树的根的层次数为2。树中结点的最大层次数称为数的深度(Depth)或高度。

父亲、儿子、兄弟

父亲(parent):一个结点的直接前驱结点
儿子(child):一个结点的直接后继结点
兄弟(sibling):同一个父亲结点的其他结点
结点A是结点B、C、D的父亲,结点B、C、D是结点A的孩子。由于结点H、I、J有一个共同的父亲D、因此它们互为兄弟。

祖先、子孙、堂兄弟

结点的祖先是从根结点到该结点路径上的所有结点。
以某结点为根的树中的任一结点都称为该结点的子孙。
父亲在同一层次的结点互为堂兄弟。

有序树、m叉树、森林

如果将树中结点的各子树看成是从左至右是有次序的,则称该树为有序树,若不考虑子树的顺序则称为无序树。对于有序树,我们可以明确定义每个结点的第一个孩子、第二个孩子,直到最后一个孩子(若无特别指明,一般探讨的都是有序树)。

树中所有结点最大度数为m的有序树称为m叉树。
森林(forest)是m(m>=0)颗互不相交树的集合,对树中每个结点而言,其子树的集合即为森林(树和森林的概念极为相似,删去一棵树的根,就得到了一个森林;反之,加上一个结点作为树根,森林就成为了一棵树)。

二叉树的基本概念

每个结点的度均不超过2的有序树,称为二叉树(binary tree)。
与树的递归定义类似,二叉树的递归定于如下:二叉树或者是一棵空树,或者是一颗由一个根结点和两颗不相交的子树(分别成为根的左子树和根的右子树)所组成的非空树。
二叉树的每一个结点的孩子数只能是0、1、2个,并且每个孩子都有左右之分。位于左边的孩子称为左孩子,位于右边的孩子称为右孩子,以左孩子为根的子树称为左子树,以右孩子为根的子树称为右子树。

满二叉树

高度为k且有2k-1ge个结点的二叉树。在满二叉树中,每层节结点都达到最大值,即每层节点都是满的,因此又称为满二叉树。

完全二叉树

若在一颗满二叉树中,在最下层从最右侧起去掉相邻的若干叶子结点,得到的二叉树即为完全二叉树。

满二叉树必须为完全二叉树,二完全二叉树不一定是满二叉树。

二叉树的性质

性质一:在二叉树的第i层上最多有2i-1个结点(根为第一层)
性质二:高度为h的二叉树最多有2h-1个结点
性质三:对任何一颗二叉树T,如果其终端结点数为n0,度为2的结点数为n2,则n0=n2+1
性质四:有n个结点的完全二叉树的高度为[log2n]+1,其中[log2n]为向下取整
性质五:含有n>=1个结点的二叉树的高度至多为n-1;高度至少为[log2n]+1,,其中[log2n]为向下取整
性质六:如果对一颗有n个结点的完全二叉树进行编号,则对任一结点i(i<=i<=n)有

  • 如果i=1,则结点i是二叉树的根结点,无双亲;如果i>1,则其双亲结点parent(i)是结点[i/2] (向下取整)
  • 如果2i>n,则节点i无左孩子;否则其左孩子是结点2i。
  • 如果2i+1>n,则结点i无右孩子;否则其右孩子是结点2i+1。
二叉树的顺序存储结构

对于满二叉树和完全二叉树来说,可以将其数据元素逐层存放到一组连续的存储单元中,如图所示,用一维数组来实现顺序存储结构时,将二叉树中编号为i的结点存放到数据的第i个分量中。如此根据二叉树的性质,可以得到结点i的父结点,左右孩子节点分别存放在 [i/2] (向下取整)、 2i 以及 2i+1 分量中。

这种存储方式对于满二叉树和完全二叉树是非常合适也是很高效方便的。因为满二叉树和完全二叉树采用顺序存储结构既不浪费空间,也可以根据公式很快的确定结点之间的关系。但是对于一般二叉树而言,则必须用“虚结点”将一颗二叉树补成一颗完全二叉树来存储,否则将无法确定结点之间的前驱后继关系,但这样一来就会造成空间的浪费。

二叉树的链式存储结构

设计不同的结点结构可构成不同的链式存储结构。在二叉树中每个结点都有两个孩子,则可以设计每个结点至少包括三个域:数据域、左孩子域和右孩子域。数据域存放数据元素,左孩子域存放指向左孩子结点的指针,右孩子域存放指向右孩子结点的指针,利用此结点结构得到的二叉树存储结构称为二叉链表。

为了方便找到父结点,可以在上述结点结构中增加一个指针域,指向结点的父结点。采用此结点结构得到的二叉树存储结构称为三叉链表。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值