小皮从零学算法(一):辗转相除法求最大公约数算法证明及Python代码

算法入门 专栏收录该内容
1 篇文章 0 订阅

辗转相除法求最大公约数

可整除两个整数的最大整数被称为两个整数的最大公约数(Greatest CommonDivisor:gcd)。求最大公约数的方法有很多,其中辗转相除法就是其中一种,是已知最古老的算法。

算法步骤为:
1.大数除小数,如果能整除,那么小数就是所求的最大公约数
2.若不能整除,则用上一步的余数来除上一步的除数,所得余数若为0,则这一步的除数就是所求的最大公约数
3.若2中所得余数不为0,则重复2,直到所得余数为0即式子被整除,这时作为除数的数就是所求的最大公约数

实际上就是,将求gcd(a,b)不断转化成求gcd(b,a%b)的问题。(%表示取模)。比如,有整数a, b,a%b=c, b%c=d, d%e=0, 则gcd(a, b)=e。

那为什么能如此转化呢?下面来看一下相关证明吧。

1.算法证明

欧几里得辗转相除算法:两个整数的最大公约数等于其中较小的那个数和两数的相除余数的最大公约数。

证明:不妨设a>b, r=a%b(即两数相除的余数),则a = bq + r。

假设d是a,b的任一公因数,则a和b都可以被d整除,可表示为:d|a,d|b。则r/d=(a-bq)/d=a/d-b/d*q=整数1-整数2 * 整数3=整数,即余数r也可被d整除,d|r。由此可得d是b,r的公因数

同理,假设d是b,r的任一公因数,则b和r都可以被d整除,可表示为:d|b,d|r。则a/d=(bq+r)/d=b/d*q+r/d=整数1 * 整数2+整数3=整数,即被除数a也可被d整除,d|a。由此可得d是a,b的公因数

综上,a,b和b,r的公因数集是相等。所以,最大公约数也是相等的。

2.Python算法

# 输入整数
a = int(input('请输入第一个整数:'))
b = int(input('请输入第二个整数:'))

# 将b变成较小的那个数
if a < b:
    smaller = a
    a = b
    b = smaller
    
# 不断将gcd(a,b)的问题转化成gcd(b,a%b)的问题
while b != 0:
    r = a % b 
    a = b
    b = r

print('最大公约数为:', a)

具体流程图如下:

Created with Raphaël 2.2.0 输入整数a,b a<b? 交换a,b值 b=0? a为最大公约数 重新赋值a,b:上轮的除数为a,余数为b yes no yes no

【参考资料】
1.https://www.zhihu.com/question/51427771(第一个回答)
2.吴灿铭, 胡昭民. 图解算法使用Python.清华大学出版社.2018

  • 1
    点赞
  • 0
    评论
  • 0
    收藏
  • 打赏
    打赏
  • 扫一扫,分享海报

©️2022 CSDN 皮肤主题:1024 设计师:我叫白小胖 返回首页

打赏作者

小皮球Nichole

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值