假设有A、a、B、b、C、c六个元素,每个大小写元素不能相邻,求有多少种排列。
第一个位置有6种可能(假设为A),第二个位置有4种(假设为B);
第三个位置如果为a,那么只能2种排列,ABaCbc和ABacbC;
第三个位置如果不为a(假设为C),有2种可能C和c,第四个位置有两种可能a和b(假设为a),第5个位置也有两种可能b和c,第6个位置只有一种可能。
排列总数=6*4*2 + 6*4*2*2*2*1=48+192=240
假设有A、a、B、b、C、c六个元素,每个大小写元素不能相邻,求有多少种排列。
第一个位置有6种可能(假设为A),第二个位置有4种(假设为B);
第三个位置如果为a,那么只能2种排列,ABaCbc和ABacbC;
第三个位置如果不为a(假设为C),有2种可能C和c,第四个位置有两种可能a和b(假设为a),第5个位置也有两种可能b和c,第6个位置只有一种可能。
排列总数=6*4*2 + 6*4*2*2*2*1=48+192=240