Turnpike reconstruction problem。 根据已知的一个两两点距离集合反推他们的原有点的坐标。姥姥在ADSAA课程中已经把伪代码给出了。我在这里尝试把他们写成可执行的C语言代码并把难点列出。
难点1:check函数。在预选定一个点后进行判断是否满足限制条件,需要先行删除distance set中的相关两点之间的距离,如果没法删除,则返回失败。为了不破坏原有数组,需要拷贝一份当前distance set数组。删除距离的代码后之前正式删除距离的代码是一致的。
难点2:Insert和Delete函数。Delete函数不得改变原有distance set 数组的排序,由于原数组是从从小到大排列,从数组尾部开始寻找第一个不为-1的数值即可。同时为了配合check函数,Delete的返回值是一个布尔值。Inserter函数比较麻烦,需要重新插入距离数值后保证distance set数组有序性。我用了一个暴力办法,每次插入数字后都冒泡排序一遍,用插入排序也是可以的。就是时间复杂度有点高。
以下是C语言代码实现:
#include <stdlib.h>
#include <stdbool.h>
#include <stdio.h>
#include <math.h>
//int distSet[15] = {1,2,2,2,3,3,3,4,5,5,5,6,7,8,10};
//为了方便,直接定义原始distSet数组,进入的程序的去掉了10,因为x5 = 10
int distSet[15] = {1,2,2,2,3,3,3,4,5,5,5,6,7,8,-1};
//resArr为结果数组,0和10分别在头尾,其他未定元素都为-1
int resArr[6] = {0,-1,-1,-1,-1,10};
int len = 15;
//bubble sort
void swap(int* a, int* b ) {
int temp;
temp=*a;
*a = *b;
*b = temp;
}
void bubbleSort(int* arr,int n){
for(int i=n-1;i>0;i--){
for(int j = 0;j<i;j++){
if(arr[j]>arr[j+1]){
swap(&(arr[j]),&(arr[j+1]));
}
}
}
}
bool isEmpty(int* distSet){
bool res=true;
for(int i=0;i<len;i++){
if(distSet[i]!=-1){
res = false;
break;
}
}
return res;
}
void copyArr(int* distSet,int* copyDistSet,int n){
int i;
for(i=0;i<n;i++){
copyDistSet[i] = distSet[i];
}
}
void pirntdistSet(int* distSet){
for(int i=0;i<15;i++){
printf("%dth=%d ",i,distSet[i]);
}
printf("\n");
}
int findMax(int* distSet){
int i;
int res=-1;
for(i=len-1;i>=1;i--){
if(distSet[i]!=-1){
res = distSet[i];
break;
}
}
return res;
}
bool Delete(int* distSet,int num){
int i;
bool res=false;
for(i=0;i<len;i++){
if(distSet[i]==num){
distSet[i]=-1;
res = true;
break;
}
}
return res;
}
bool Insert(int* distSet,int num){
bool res = false;
int i;
for(i=0;i<len;i++){
if(distSet[i]==-1){
distSet[i] = num;
res = true;
break;
}
}
bubbleSort(distSet,15);
}
bool check(int* resArr,int *copyDistSet ,int D_max,int n, int left,int right){
bool res;
for(int i =0 ;i<left;i++){
res = Delete(copyDistSet,abs(D_max-resArr[i]));
if(!res){
return false;
}
}
for(int j = right+1;j<n;j++){
res = Delete(copyDistSet,abs(D_max-resArr[j]));
if(!res){
return false;
}
}
return res;
}
bool Reconstruct(int* resArr, int* distSet,int n, int left, int right){
//given that x[1],x[2]...x[left-1] and x[right+1]...x[n] have been solved
bool found = false;
int i;
if(isEmpty(distSet)){
return true; // solved
}
//copy distSet to check
int* copyDist=(int*) malloc(sizeof(int)*len);
copyArr(distSet,copyDist,len);
// find max
int D_max =findMax(distSet);
bool isOk = check(resArr,copyDist,D_max,n,left,right);
if(isOk){
resArr[right] = D_max;
for(i=0;i<left;i++){
Delete(distSet,abs(resArr[right]-resArr[i]));
}
for(i=right+1;i<n;i++){
Delete(distSet,abs(resArr[right]-resArr[i]));
}
found = Reconstruct(resArr,distSet,n,left,right-1);
if(!found){
for(i=0;i<left;i++){
Insert(distSet,abs(resArr[right]-resArr[i]));
}
for(i=right+1;i<n;i++){
Insert(distSet,abs(resArr[right]-resArr[i]));
}
}
copyArr(distSet,copyDist,len);
if(!found){
isOk = check(resArr,copyDist,abs(resArr[n-1]-D_max),n,left,right);
if(isOk){
resArr[left] =resArr[n-1]-D_max;
for(i=0;i<left;i++){
Delete(distSet,abs(resArr[left]-resArr[i]));
}
for(i=right+1;i<n;i++){
Delete(distSet,abs(resArr[left]-resArr[i]));
}
found = Reconstruct(resArr,distSet,n,left+1,right);
if(!found){
for(i=0;i<left;i++){
Insert(distSet,abs(resArr[left]-resArr[i]));
}
for(i=right+1;i<n;i++){
Insert(distSet,abs(resArr[left]-resArr[i]));
}
}
}
}
free(copyDist);
}
return found;
}
int main (){
Reconstruct(resArr,distSet,6,1,4);
//打印结果
for(int i =0;i<6;i++){
printf("%d ",resArr[i]);
}
return 0;
}