浙大Adavanced Data Structure and Algorithms Analysis -Turnpike reconstruction problem回溯代码实现(C语言)

Turnpike reconstruction problem。 根据已知的一个两两点距离集合反推他们的原有点的坐标。姥姥在ADSAA课程中已经把伪代码给出了。我在这里尝试把他们写成可执行的C语言代码并把难点列出。

难点1:check函数。在预选定一个点后进行判断是否满足限制条件,需要先行删除distance set中的相关两点之间的距离,如果没法删除,则返回失败。为了不破坏原有数组,需要拷贝一份当前distance set数组。删除距离的代码后之前正式删除距离的代码是一致的。

难点2:Insert和Delete函数。Delete函数不得改变原有distance set 数组的排序,由于原数组是从从小到大排列,从数组尾部开始寻找第一个不为-1的数值即可。同时为了配合check函数,Delete的返回值是一个布尔值。Inserter函数比较麻烦,需要重新插入距离数值后保证distance set数组有序性。我用了一个暴力办法,每次插入数字后都冒泡排序一遍,用插入排序也是可以的。就是时间复杂度有点高。

以下是C语言代码实现:

#include <stdlib.h>
#include <stdbool.h>
#include <stdio.h>
#include <math.h>

//int distSet[15] = {1,2,2,2,3,3,3,4,5,5,5,6,7,8,10};
//为了方便,直接定义原始distSet数组,进入的程序的去掉了10,因为x5 = 10 
int distSet[15] = {1,2,2,2,3,3,3,4,5,5,5,6,7,8,-1};
//resArr为结果数组,0和10分别在头尾,其他未定元素都为-1
int resArr[6] = {0,-1,-1,-1,-1,10};
int len = 15;

//bubble sort
void swap(int* a, int* b ) {
	int temp;
	temp=*a;
	*a = *b;
	*b = temp;
}

void bubbleSort(int* arr,int n){
	for(int i=n-1;i>0;i--){
		for(int j = 0;j<i;j++){
			if(arr[j]>arr[j+1]){
				swap(&(arr[j]),&(arr[j+1]));
			}
		}
	}
}

bool isEmpty(int* distSet){
	bool res=true;
	for(int i=0;i<len;i++){
		if(distSet[i]!=-1){
			res = false;
			break;
		}
	}
	return res;
}

void copyArr(int* distSet,int* copyDistSet,int n){
	int i;
	for(i=0;i<n;i++){
		copyDistSet[i] = distSet[i];
	}
}

void pirntdistSet(int* distSet){
	for(int i=0;i<15;i++){
		printf("%dth=%d ",i,distSet[i]); 
	}
	printf("\n");
}

int findMax(int* distSet){
	int i;
	int res=-1;
	for(i=len-1;i>=1;i--){
		if(distSet[i]!=-1){
			res = distSet[i];

			break; 
		}
	}
	return res;
}

bool Delete(int* distSet,int num){
	int i;
	bool res=false;
	for(i=0;i<len;i++){
		if(distSet[i]==num){
			distSet[i]=-1;
			res = true;
			break;
		}
	}
	return res;
} 

bool Insert(int* distSet,int num){
	bool res = false;
	int i;
	for(i=0;i<len;i++){
		if(distSet[i]==-1){
			distSet[i] = num;
			res = true;
			break;
		}
	}
	bubbleSort(distSet,15);
}

bool check(int* resArr,int *copyDistSet ,int D_max,int n, int left,int right){
	bool res;
	for(int i =0 ;i<left;i++){
		res = Delete(copyDistSet,abs(D_max-resArr[i]));
		if(!res){
			return false;
		}
	} 
	for(int j = right+1;j<n;j++){
		res = Delete(copyDistSet,abs(D_max-resArr[j]));
		if(!res){
			return false;
		}
	}
	return res;
}

bool Reconstruct(int* resArr, int* distSet,int n, int left, int right){
	//given that x[1],x[2]...x[left-1]  and x[right+1]...x[n] have been solved
	bool found  = false;
	int i;
	if(isEmpty(distSet)){
		return true; // solved
	}
	//copy distSet to check
	int* copyDist=(int*) malloc(sizeof(int)*len);
	copyArr(distSet,copyDist,len);
	// find max
	int D_max =findMax(distSet);
	bool isOk = check(resArr,copyDist,D_max,n,left,right);
	if(isOk){
		resArr[right] = D_max;
		for(i=0;i<left;i++){
			Delete(distSet,abs(resArr[right]-resArr[i]));
		}
		for(i=right+1;i<n;i++){
			Delete(distSet,abs(resArr[right]-resArr[i]));
		}
		found = Reconstruct(resArr,distSet,n,left,right-1);
		if(!found){
			for(i=0;i<left;i++){
				Insert(distSet,abs(resArr[right]-resArr[i]));
			}
			for(i=right+1;i<n;i++){
				Insert(distSet,abs(resArr[right]-resArr[i]));
			}
		}
		copyArr(distSet,copyDist,len);
		if(!found){
			isOk = check(resArr,copyDist,abs(resArr[n-1]-D_max),n,left,right);
			if(isOk){
				resArr[left] =resArr[n-1]-D_max;
				for(i=0;i<left;i++){
					Delete(distSet,abs(resArr[left]-resArr[i]));
				}
				for(i=right+1;i<n;i++){
					Delete(distSet,abs(resArr[left]-resArr[i]));
				}
				found = Reconstruct(resArr,distSet,n,left+1,right);
				if(!found){
					for(i=0;i<left;i++){
					    Insert(distSet,abs(resArr[left]-resArr[i]));
				    }
				    for(i=right+1;i<n;i++){
				    	Insert(distSet,abs(resArr[left]-resArr[i]));
					}
				}
			}
		}
		free(copyDist);
	}
	return found;
}

int main (){
	Reconstruct(resArr,distSet,6,1,4);
	//打印结果 
	for(int i =0;i<6;i++){
		printf("%d ",resArr[i]);
	} 
	return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值