Leetcode 333. Largest BST Subtree (Medium) (cpp)

287 篇文章 0 订阅
48 篇文章 0 订阅

Leetcode 333. Largest BST Subtree (Medium) (cpp)

Tag: Tree

Difficulty: Medium


/*

333. Largest BST Subtree (Medium)

Given a binary tree, find the largest subtree which is a Binary Search Tree (BST), where largest means subtree with largest number of nodes in it.

Note:
A subtree must include all of its descendants.
Here's an example:
10
/ \
5  15
/ \   \
1   8   7
The Largest BST Subtree in this case is the highlighted one.
The return value is the subtree's size, which is 3.
Hint:

You can recursively use algorithm similar to 98. Validate Binary Search Tree at each node of the tree, which will result in O(nlogn) time complexity.

*/
/**
* Definition for a binary tree node.
* struct TreeNode {
*     int val;
*     TreeNode *left;
*     TreeNode *right;
*     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
	int largestBSTSubtree(TreeNode* root) {
		int res = 0;
		largestBSTSubtree(root, res);
		return res;
	}
private:
	vector<int> largestBSTSubtree(TreeNode* root, int& res) {
		if (root == NULL) {
			return{ 0,0,0 };
		}
		else if (root->left == NULL && root->right == NULL) {
			res = max(res, 1);
			return{ 1, root->val, root->val };
		}
		vector<int> l = largestBSTSubtree(root->left, res), r = largestBSTSubtree(root->right, res);
		if (l[0] != -1 && r[0] != -1) {
			if ((l[0] == 0 || root->val > l[2]) && (r[0] == 0 || root->val < r[1])) {
				res = max(res, l[0] + r[0] + 1);
				int small = l[1] == 0 ? root->val : l[1], large = r[2] == 0 ? root->val : r[2];
				return{ l[0] + r[0] + 1, small, large };
			}
		}
		return{ -1,0,0 };
	}
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值