Description
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
Input
输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。
Output
输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行”Impossible”
Sample Input
1 2 3 4 5
Sample Output
4
这个题两个人都往一个方向跑比较好想
要是不往一个方向跑不就不好做了….
列出式子变变形
把mod都去掉就可以了…
关键是一个负数的处理…
#include<stdio.h>
#include<math.h>
#include<iostream>
#include<string.h>
#include<queue>
#include<algorithm>
#include<string>
using namespace std;
void ex_gcd(long long a, long long b, long long &x, long long &y) {
if (!b) {
x = 1; y = 0;
return;
}
ex_gcd(b, a%b, y, x); //方便计算调换以下 x,y
y -= (a / b) * x;
}
long long gcd(long long a, long long b)
{
if (b == 0) return a;
return gcd(b, a%b);
}
int main()
{
long long x, y, n, m, l;
while (cin >> x >> y >> n >> m >> l)
{
long long q = m - n, w = x - y;
//if (q < 0)q = -q, w = -w;
long long jieguo = gcd(q, l);
//if (jieguo < 0)jieguo = -jieguo;
//k*q+t*l=w
if (w%jieguo)
{
cout << "Impossible" << endl;
continue;
}
long long qq, ww;
q /= jieguo, w /= jieguo, l /= jieguo;
ex_gcd(q, l, qq, ww);
long long yy = qq*w;
yy %= l;//乘完了以后又多走好几步...去掉
while (yy < 0)yy += l;
cout << yy << endl;
}
return 0;
}