Codeforces 830A(46/600)

There are n people and k keys on a straight line. Every person wants to get to the office which is located on the line as well. To do that, he needs to reach some point with a key, take the key and then go to the office. Once a key is taken by somebody, it couldn’t be taken by anybody else.

You are to determine the minimum time needed for all n people to get to the office with keys. Assume that people move a unit distance per 1 second. If two people reach a key at the same time, only one of them can take the key. A person can pass through a point with a key without taking it.

Input
The first line contains three integers n, k and p (1 ≤ n ≤ 1 000, n ≤ k ≤ 2 000, 1 ≤ p ≤ 109) — the number of people, the number of keys and the office location.

The second line contains n distinct integers a1, a2, …, an (1 ≤ ai ≤ 109) — positions in which people are located initially. The positions are given in arbitrary order.

The third line contains k distinct integers b1, b2, …, bk (1 ≤ bj ≤ 109) — positions of the keys. The positions are given in arbitrary order.

Note that there can’t be more than one person or more than one key in the same point. A person and a key can be located in the same point.

Output
Print the minimum time (in seconds) needed for all n to reach the office with keys.

Examples
input
2 4 50
20 100
60 10 40 80
output
50
input
1 2 10
11
15 7
output
7
Note
In the first example the person located at point 20 should take the key located at point 40 and go with it to the office located at point 50. He spends 30 seconds. The person located at point 100 can take the key located at point 80 and go to the office with it. He spends 50 seconds. Thus, after 50 seconds everybody is in office with keys.

远的找远的近的找近的
需要证明
dp不出来了可以试试xjb证明可能复杂度就进化了

#include<bits/stdc++.h>
using namespace std;
#define int long long 
int ren[1001],yaoshi[2001],dp[1001][2001];
main()
{
    int n,m,k;
    cin>>n>>m>>k;
    for(int a=1;a<=n;a++)scanf("%I64d",&ren[a]);
    for(int a=1;a<=m;a++)scanf("%I64d",&yaoshi[a]);
    int tt=1e19;
    sort(ren+1,ren+n+1);
    sort(yaoshi+1,yaoshi+m+1);
    for(int a=1;a<=m;a++)
    {
        if(a+n-1>m)break;
        int tr=0;
        for(int b=1;b<=n;b++)
        {
            int yt=abs(k-yaoshi[a+b-1]),yy=abs(yaoshi[a+b-1]-ren[b]);
            tr=max(yt+yy,tr);
        }
        tt=min(tt,tr);
    }
    cout<<tt;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值