剑指Offer10-I_斐波那契数列

剑指 Offer 10- I. 斐波那契数列

题目:斐波那契数列
  • LeetCode地址:剑指 Offer 10- I. 斐波那契数列

  • 描述:

    写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项。斐波那契数列的定义如下:

    F(0) = 0,   F(1) = 1
    F(N) = F(N - 1) + F(N - 2), 其中 N > 1.
    

    斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。

    答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

  • 示例:

    输入:n = 2
    输出:1
    
    输入:n = 5
    输出:5
    
题解:

求余运算规则: 设正整数 a, b, p ,求余符号为 % ,则:(a + b) % p = (a % p + b % p) % p

方法一:额外数组
  • 思路:使用额外数组存储计算过的值

  • 代码:

    public int fib(int n) {
        if (n == 0) {
            return 0;
        }
        if (n == 1) {
            return 1;
        }
        int[] value = new int[n + 1];
        value[0] = 0;
        value[1] = 1;
        for (int i = 2; i <= n; i++) {
            //前提:(a + b) % p = (a % p + b % p) % p
            value[i] = (value[i - 1] + value[i - 2]) % 1000000007;
        }
        return value[n];
    }
    
  • 复杂度分析:

    • 时间复杂度:O(n) 。
    • 空间复杂度:O(n)。
  • 测试:

    image-20201105115144674
方法二:动态规划
  • 思路:

    第 n 项只与第 n-1 和第 n-2 项有关,因此只需要初始化三个整形变量 sum, a, b ,利用辅助变量 sum 使 a , b 两数字交替前进即可。

  • 代码:

    public int fib(int n) {
        if (n == 0) return 0;
        int a = 0, b = 1, sum;
        for (int i = 2; i <= n; i++) {
            sum = (a + b) % 1000000007;
            a = b;
            b = sum;
        }
        return b;
    }
    
  • 复杂度分析:

    • 时间复杂度:O(n) 。计算 f(n) 需循环 n次,每轮循环内计算操作使用 O(1) 。
    • 空间复杂度:O(1) 。几个标志变量使用常数大小的额外空间。
  • 测试:

    image-20201105121257005
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值