一、无向图
1.定义
2. 相关概念
- V(G):顶点集或节点集,其中的元素vi为一个顶点或节点。
- E(G):边集,其中的元素ek=(vi, vj) 为一条从vi到 vj的边。
- 端点
- 关联
- 顶点相邻、边相邻
- 赋权无向图(无向网络):边上赋权的无向图。我们对图和
网络不作严格区分,因为任何图总是可以赋权的。 - 有限图:一个图称为有限图,如果它的顶点集和边集都有限。图G 的顶点数用符号| V |或ν (G)表示,边数用| E |或ε (G)表示。
当讨论的图只有一个时,总是用G 来表示这个图。从而在图论符号中我们常略去字母G ,例如,分别用V, E, ν 和 ε 代替V (G),E(G),ν (G)和ε (G)。 - 环:端点重合为一点的边称为环(loop)。
- 简单图:一个图称为简单图(simple graph),如果它既没有环也没有两条边连接同一对顶点。
二、有向图
1. 定义
2. 相关概念
- V:顶点集或节点集,其中的每一个元素vi称为该图的一个顶点或节点;
- A:弧集(arc set),其中的每一个元素ak=(vi, vj) ,被称为一条从vi到 vj的弧(arc);
- 尾、头、出弧、入弧
- 基础图:对应于每个有向图D,可以在相同顶点集上作一个图G,使得对于D的每条弧,G有一条有相同端点的边与之相对应。这个图称为D的基础图。
- 定向图:给定任意图G,对于它的每个边,给其端点指定一个顺序,从而确定一条弧,由此得到一个有向图,这样的有向图称为G的一个定向图。
三、完全图、二分图
1. 定义
2. 相关概念
- 完全图
- 二分图
- 完全二分图