数学建模——图与网络(2)——图与网络的基本概念

本文详细介绍了图与网络的基本概念,包括无向图和有向图的定义及相关概念,如顶点的度、完全图、二分图、子图等。此外,还探讨了图与网络的数据结构,如邻接矩阵、关联矩阵、弧表和邻接表表示法,以及它们在不同情况下的优缺点。最后,文章提到了轨与连通的概念,讨论了连通图的特点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、无向图

1.定义

在这里插入图片描述

2. 相关概念

  • V(G):顶点集节点集,其中的元素vi为一个顶点节点
  • E(G):边集,其中的元素ek=(vi, vj) 为一条从vi到 vj
  • 端点
  • 关联
  • 顶点相邻边相邻
  • 赋权无向图(无向网络):边上赋权的无向图。我们对图和
    网络不作严格区分,因为任何图总是可以赋权的。
  • 有限图:一个图称为有限图,如果它的顶点集和边集都有限。图G 的顶点数用符号| V |或ν (G)表示,边数用| E |或ε (G)表示。
    当讨论的图只有一个时,总是用G 来表示这个图。从而在图论符号中我们常略去字母G ,例如,分别用V, E, ν 和 ε 代替V (G),E(G),ν (G)和ε (G)。
  • 端点重合为一点的边称为环(loop)。
  • 简单图:一个图称为简单图(simple graph),如果它既没有环没有两条边连接同一对顶点

二、有向图

1. 定义

在这里插入图片描述

2. 相关概念

  • V:顶点集节点集,其中的每一个元素vi称为该图的一个顶点节点
  • A:弧集(arc set),其中的每一个元素ak=(vi, vj) ,被称为一条从vi到 vj(arc);
  • 尾、头、出弧、入弧
  • 基础图:对应于每个有向图D,可以在相同顶点集上作一个图G,使得对于D的每条弧,G有一条有相同端点的边与之相对应。这个图称为D的基础图。
  • 定向图:给定任意图G,对于它的每个边,给其端点指定一个顺序,从而确定一条弧,由此得到一个有向图,这样的有向图称为G的一个定向图。

三、完全图、二分图

1. 定义

在这里插入图片描述

2. 相关概念

  • 完全图
  • 二分图
  • 完全二分图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr.Persimmon

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值