1.Prime
题目大意
给你两个数 l 和 k,你需要确定的是在区间 [l,l+2k)中是不是有超过 k 个质数。
解题思路
如果暴力枚举时间复杂度是O(n)的,1e8的数据会超时
除了2,所有偶数都不是质数。所以如果l !=2,那么[l, l+2k) 最多有k个质数。 如果 l=2 ,除了 {2, 3}, {2, 3, 4, 5} 以及 {2, 3, 4, 5, 6, 7}这三种可能,其他的[l, l + 2k) 最多只有k个质数。所以特判一下输入的l和k满不满足这三种情况就行了
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long LL;
const int N=1e8+10;
int l,k;
bool check(int l,int k){
if(l!=2) return false;
if(k==1||k==2||k==3) return true;
return false;
}
int main(){
scanf("%d%d",&l,&k);
if(check(l,k)) puts("Yes");
else puts("No");
return 0;
}
3.Convert
题目大意
任意一个“复数整数” a+bi (a,b 均为整数) 可采用如下算法转换为−1+i 进制表示:
1、a+bi 除以 −1+i 得到商 q 和余数 r ,商q 也为“复数整数”,余数 r 为 0 或 1。
令 q=qr+qii (qr 与 qi 均为整数,分别表示商 q 的实部与虚部),
q,r 必满足下式: a+bi=(qr+qii)(−1+i)+r
如果 a,b 均为偶数或均为奇数,则令 r 为 0。
此外,如果 a,b 一奇一偶,则令 r 为 1。
2、重复第一步用商 q 除以 −1+i 记录下余数 r,直到商为 0,运算过程结束。
3、从下往上读取余数,就可得到 “复数整数” a+bi 的 −1+i 进制表示。
例如:整数 2=2+0i 的运算过程:
整数 2 的实部和虚部都是偶数,所以余数为 0 ,2−1+i=(−1−i) 余 0
−1−i 的实部和虚部均为奇数,所以余数为 0,−1−i−1+i=i 余 0
i 的实部为偶数,虚部为奇数,所以余数为 1,i−1+i=1 余 1
1 的实部为奇数,虚部为偶数,所以余数为 1,1−1+i=0 余 1
商为 0,运算结束,从下往上读取,得到整数 2 用−1+i进制表示为1100。
输出“复数整数” a+bi 用 −1+i 进制的表示。(|a|,|b|≤1e18)
解题思路
根据题目给的公式,我们很容易就得到一个二元一次方程组
-(qr+qi)=a
qr-qi=b
解得
qr=(b-a)/2
qi=-(a+b)/2
所以根据题意和公式模拟就行了
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
typedef long long LL;
LL a=0,b=0;//a+bi
string s;
void read(){
cin>>s;
int i=0;LL sum=0;bool flag=false;
if(s[i]=='-'){//计算a
flag=true;
i++;
}
while(s[i]>='0'&&s[i]<='9'){
sum=sum*10+s[i]-'0';
i++;
}
if(!sum){//如果sum=0,说明计算的是b,就把sum赋给b
if(!sum) sum=1;
if(flag) sum=0-sum;
b=sum;
return;
}
if(flag) sum=0-sum;
a=sum;
if(i==s.length()) return;//说明b=0
if(s[i]=='+') flag=false;//计算b
else flag=true;
i++;sum=0;
while(s[i]>='0'&&s[i]<='9'){
sum=sum*10+s[i]-'0';
i++;
}
if(!sum) sum=1;//如果i前没有数字,那就是1倍的i,b=1
if(flag) sum=0-sum;
b=sum;
}
int main(){
read();
if(!a&&!b){
puts("0");
return 0;
}
vector<int> ans;
while(a||b){
if((a+b)%2==0) ans.push_back(0);//记录余数
else{
ans.push_back(1);
a--;
}
LL qr=(b-a)>>1;//计算商
LL qi=0-((a+b)>>1);
a=qr;b=qi;
}
for(int i=ans.size()-1;i>=0;i--) printf("%d",ans[i]);
return 0;
}