孪生支持向量机 Matlab实现
一、什么是支持向量机
支持向量机(SVM)是一种分类算法,它基于找到将数据分为两类的最佳超平面。该算法通过查找具有最大间隔的决策边界来实现这样做。支持向量机的准确性高,因为它可以处理高维数据,并且对于数据集中的异常值也表现出很好的鲁棒性。
二、什么是孪生支持向量机
孪生支持向量机(Twin SVM)基于支持向量机,并优化了其缺陷。传统的支持向量机只支持二分类问题;而孪生支持向量机可以分类多个类别的问题。此外,孪生支持向量机还可以解决训练数据集中的类别不平衡问题,即有些类别的样本数量远远小于其他类别。
三、如何使用Matlab实现孪生支持向量机
1.加载数据集
首先,我们需要加载一个用于演示孪生支持向量机的数据集。我们可以使用Matlab预装的鸢尾花数据集。该数据集包含150个样本,分为三个类别,每个类别包含50个样本。
load fisheriris
X = meas(:,