孪生支持向量机 Matlab实现

384 篇文章 ¥59.90 ¥99.00
本文介绍了孪生支持向量机(Twin SVM),它是支持向量机(SVM)的拓展,适用于多分类问题和解决类别不平衡问题。文章详细阐述了如何使用Matlab加载数据、预处理、划分训练集和测试集,以及如何训练和评估孪生支持向量机模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

孪生支持向量机 Matlab实现

一、什么是支持向量机

支持向量机(SVM)是一种分类算法,它基于找到将数据分为两类的最佳超平面。该算法通过查找具有最大间隔的决策边界来实现这样做。支持向量机的准确性高,因为它可以处理高维数据,并且对于数据集中的异常值也表现出很好的鲁棒性。

二、什么是孪生支持向量机

孪生支持向量机(Twin SVM)基于支持向量机,并优化了其缺陷。传统的支持向量机只支持二分类问题;而孪生支持向量机可以分类多个类别的问题。此外,孪生支持向量机还可以解决训练数据集中的类别不平衡问题,即有些类别的样本数量远远小于其他类别。

三、如何使用Matlab实现孪生支持向量机

1.加载数据集

首先,我们需要加载一个用于演示孪生支持向量机的数据集。我们可以使用Matlab预装的鸢尾花数据集。该数据集包含150个样本,分为三个类别,每个类别包含50个样本。

load fisheriris
X = meas(:,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值