人工智能数学基础---分部积分法实现 python

211 篇文章 ¥59.90 ¥99.00
本文介绍了如何利用Python实现分部积分法,通过回顾公式并编写`integrate_by_parts`函数,可以计算两个可导函数的不定积分。举例计算了`∫ln(x)cos(x)dx`的积分,展示其在微积分应用中的实用性,对于理解和应用微积分知识以及数据科学工作具有帮助。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

人工智能数学基础—分部积分法实现 python

在微积分中,分部积分法是求不定积分的一种常用方法。在这篇文章中,我们将通过 Python 实现分部积分法,以便更好地理解和应用这个方法。

首先,让我们回顾一下分部积分法的公式:

∫u(x)v’(x)dx = u(x)v(x)-∫v(x)u’(x)dx

其中 u(x) 和 v(x) 是两个可导函数。我们将使用该公式编写一个函数来计算不定积分。

def integrate_by_parts(u_func, v_func, a, b):
from sympy import Symbol, integrate

x = Symbol('x')
u = u_func(x)
v = v_func(x)

result = u * v.subs(x, b) - u * v.subs(x, a) - integrate(v.diff(x) * u.diff(x), (x, a, b))

return result

现在,我们可以使用该函数来计算任何两个可导函数的不定积分。例如,如果我们要计算 ∫ln(x)cos(x)dx 的不定积分,则可以使用以下代码:

from sympy import ln, cos

u_func = ln
v_func = cos

result = integrate_by_parts(u_fu

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值