主成分分析(PCA)与线性判别分析(LDA)的区别及Python实现

211 篇文章 ¥59.90 ¥99.00
本文详细介绍了PCA和LDA的区别,PCA旨在保留数据方差,不考虑类别信息,而LDA则考虑类别差异,最大化类别间可分性。两者在数据假设和维度上有显著差异,PCA是无监督的,LDA是有监督的。文章提供了Python实现示例,帮助理解PCA和LDA的应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

主成分分析(PCA)与线性判别分析(LDA)的区别及Python实现

主成分分析(Principal Component Analysis,PCA)和线性判别分析(Linear Discriminant Analysis,LDA)是常用的降维技术,用于对高维数据进行特征提取和可视化。尽管它们在某些方面有相似之处,但它们的目标和方法存在一些关键的区别。本文将详细介绍PCA和LDA的区别,并提供使用Python实现这两种方法的示例代码。

  1. 目标:
    PCA的目标是通过找到数据中的主要成分来最大程度地保留原始数据的方差。它通过线性变换将数据投影到一个新的低维空间中,新的特征被称为主成分。PCA不考虑类别信息,它仅仅是通过对数据的协方差矩阵进行特征值分解来找到主成分。

LDA的目标是在降维的同时最大化类别之间的可分性。LDA通过线性变换将数据投影到一个新的低维空间中,新的特征被称为线性判别变量。LDA利用了类别之间的差异,使得同一类别内的样本尽可能接近,不同类别之间的样本尽可能远离。

  1. 数据假设:
    PCA对数据的假设是数据是线性可分布的,即数据在整个特征空间中没有明显的类别结构。PCA寻找的主成分是与数据的变化方向相关的。

LDA对数据的假设是数据是类别可分布的,即不同类别的样本在特征空间中具有明显的聚类结构。LD

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值