主成分分析(PCA)与线性判别分析(LDA)的区别及Python实现
主成分分析(Principal Component Analysis,PCA)和线性判别分析(Linear Discriminant Analysis,LDA)是常用的降维技术,用于对高维数据进行特征提取和可视化。尽管它们在某些方面有相似之处,但它们的目标和方法存在一些关键的区别。本文将详细介绍PCA和LDA的区别,并提供使用Python实现这两种方法的示例代码。
- 目标:
PCA的目标是通过找到数据中的主要成分来最大程度地保留原始数据的方差。它通过线性变换将数据投影到一个新的低维空间中,新的特征被称为主成分。PCA不考虑类别信息,它仅仅是通过对数据的协方差矩阵进行特征值分解来找到主成分。
LDA的目标是在降维的同时最大化类别之间的可分性。LDA通过线性变换将数据投影到一个新的低维空间中,新的特征被称为线性判别变量。LDA利用了类别之间的差异,使得同一类别内的样本尽可能接近,不同类别之间的样本尽可能远离。
- 数据假设:
PCA对数据的假设是数据是线性可分布的,即数据在整个特征空间中没有明显的类别结构。PCA寻找的主成分是与数据的变化方向相关的。
LDA对数据的假设是数据是类别可分布的,即不同类别的样本在特征空间中具有明显的聚类结构。LD