决策树是一种常用的机器学习算法,它可以用于分类和回归任务。在本文中,我们将学习如何使用Python实现决策树分类算法,并通过提供相应的源代码来展示其实际应用。
决策树是一种基于树形结构的分类模型,通过对数据集进行递归划分来进行决策。算法的核心思想是选择最佳的特征进行划分,使得每个子节点的纯度最大化。下面是一个详细的实现步骤:
步骤 1:数据准备
首先,我们需要准备用于训练决策树模型的数据集。数据集应包含特征和相应的标签。特征是描述样本的属性,而标签是我们要预测的目标变量。确保数据集已经被正确地加载到Python环境中。
步骤 2:定义决策树节点
决策树由节点组成,每个节点都包含一个特征和一个阈值。我们可以使用一个类来表示决策树节点,其中特征和阈值是节点的属性。以下是一个示例实现:
class DecisionNode:
def __init__