水表读数自动识别,有图形界面,有完整代码和教程,可运行。基于DB和CRNN的方法。水表读数识别。

 本文参考

我爱计算机视觉

参考的博客是水表读数自动识别,基于DB和CRNN的方法-CSDN博客

前言

环境自己看报错配置吧。

PT文件训练好了,但只有30代,准确度不高。用是可以用。

一.项目压缩包下载

百度网盘吧,10kb下一天差不多了。

链接:https://pan.baidu.com/s/1E72mndB_MGSirHVrkk8BKg?pwd=UFNK 
提取码:UFNK

二.项目运行方法

运行Main.py可以启动我编写的界面。

datasets里面是训练的图片。

temp里面是最终训练出来的CRNN和DB的模型。

三.项目运行结果

太久没开了,结果PYQT出BUG了,先不演示了,这段时间重装下系统。

<think>好的,我现在需要帮助用户了解如何使用DBNet结合CRNN训练自己的数据集来实现文字检测与识别。首先,我需要回顾一下用户提供的引用内容,看看有哪些相关信息可以利用。 根据引用[1]、[2]、[3],用户提到的项目分为数据集说明、DBNet检测模型训练、CRNN识别模型训练以及部署等部分。引用[3]还提到表格识别涉及三个模型:DB单行文本检测、CRNN单行文本识别SLANet表格结构预测。而引用[4]则提到了中文数据集的选择,比如ICPRICDAR的中文数据集。这些信息可以帮助我构建训练流程的步骤。 用户的问题是希望了解如何结合DBNetCRNN训练自己的数据集。根据我的知识,DBNet用于文本检测,CRNN用于文本识别,这两个模型通常是串联使用的,即先用DBNet检测出文字区域,再用CRNN进行识别。接下来需要按照步骤详细说明数据准备、检测模型训练、识别模型训练以及联合使用的方法。 首先,数据准备方面,用户需要标注检测识别的数据集。检测数据集需要文本框坐标,识别数据集需要对应的文本标签。引用[4]提到的数据集可以作为参考,但用户可能需要自己的数据集,所以需要指导如何标注,比如使用LabelImg或PPOCRLabel工具。 然后是DBNet的训练,这部分需要配置数据集路径、调整超参数,并启动训练。引用[1][2]中提到的轻量化模型可能涉及调整DBNet的结构,比如使用MobileNet作为backbone。训练完成后需要验证检测效果,确保检测框准确。 接下来是CRNN的训练,同样需要准备识别数据集,可能需要对检测出的文本框进行裁剪并对应到文本标签。CRNN的输入是单行文本图像,输出是序列标签。训练时需要注意字符集的定义,比如包含哪些字符,以及CTC损失的使用。 最后,如何将两个模型结合起来,也就是先使用DBNet检测文本框,再裁剪出这些区域送入CRNN进行识别。这里需要提到后处理步骤,比如非极大值抑制(NMS)处理检测框,以及CTC解码识别结果。 还需要考虑用户可能遇到的问题,比如数据集标注的格式、训练参数的调整、模型轻量化方法,以及实际应用中的部署问题。根据引用[1],项目提供了Python/C++/Android的部署版本,可能用户后续需要部署到移动端,所以在训练时可以考虑模型轻量化,比如使用更小的网络结构或量化技术。 此外,用户可能需要了解如何评估模型性能,比如检测的准确率、识别的字符错误率等,以及如何调试模型。例如,检测模型如果漏检或误检,可能需要增加数据增强或调整检测阈值;识别模型如果错误率高,可能需要检查字符集是否完整或增加训练数据。 最后,生成的相关问题需要围绕用户可能进一步想了解的内容,比如数据集标注工具推荐、模型轻量化方法、实际应用中的优化技巧,以及部署到不同平台的方法。</think>### 使用DBNet结合CRNN训练自定义数据集的教程 以下是实现文字检测与识别的分步指南,结合了DBNet(检测)CRNN识别)模型: --- ### **1. 数据集准备** #### (1) 检测数据集标注 - **格式要求**:文本区域用四边形坐标标注,保存为`JSON`或`TXT`文件 示例标注格式: ```json {"image_path": "img_001.jpg", "annotations": [[x1,y1,x2,y2,x3,y3,x4,y4,"text"], ...]} ``` - **工具推荐**: - LabelImg(支持四边形标注) - PPOCRLabel(专为OCR任务设计,自动预标注)[^4] #### (2) 识别数据集处理 - **图像裁剪**:根据检测标注从原图中裁剪出文本区域图像 - **标签文件**:保存为`文本路径\t标签`格式,例如: ``` crop_001.jpg 北京市朝阳区 crop_002.jpg 水表编号:A3B5 ``` --- ### **2. DBNet检测模型训练** #### (1) 配置文件修改 修改`configs/dbnet.yaml`: ```yaml dataset: train_root: /path/to/train_images val_root: /path/to/val_images annotation_path: /path/to/annotations.json ``` #### (2) 启动训练 ```bash python tools/train.py --config configs/dbnet.yaml --gpu 0 ``` - **关键参数**: - 输入图像尺寸:建议$640 \times 640$ - 学习率:初始值$1e-4$,采用余弦衰减策略 - 后处理阈值:`text_threshold=0.7`, `link_threshold=0.5`[^2] #### (3) 验证检测效果 ```python from dbnet.infer import Detector detector = Detector(model_path="dbnet.pth") boxes, scores = detector.predict("test_image.jpg") ``` --- ### **3. CRNN识别模型训练** #### (1) 字符集定义 在`crnn/keys.py`中指定字符类别: ```python alphabet = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ:-" # 根据实际字符修改 ``` #### (2) 配置文件调整 修改`configs/crnn.yaml`: ```yaml Train: img_root: /path/to/cropped_images/ label_file: train_labels.txt ``` #### (3) 启动训练 ```bash python train.py --cfg configs/crnn.yaml --batch_size 64 ``` - **优化技巧**: - 使用CTC Loss + 交叉熵联合训练 - 数据增强:随机透视变换、灰度化、模糊[^1] --- ### **4. 联合检测与识别** ```python # Step1: 文本检测 det_boxes = dbnet(image) # Step2: 区域裁剪与识别 for box in det_boxes: crop_img = crop_by_box(image, box) text = crnn(crop_img) print(f"位置:{box}, 内容:{text}") ``` - **后处理关键**: - 检测框使用NMS过滤(IoU阈值$0.5$) - 识别结果采用Beam Search解码[^3] --- ### **
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值