[Leetcode]Unique Paths

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?


Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

要机器人从矩形格子的左上走到右下,机器人只能往下或往右走,问有几条路线~这种题首先想到的是动态规划,递推公式是dp[i][j] = dp[i - 1][j] + dp[i][j - 1], 代码如下~这种解法时间复杂度为O(m * n), 空间复杂度为O(m * n)(因为用了一个二维的数组~)

class Solution:
    # @return an integer
    def uniquePaths(self, m, n):
        if m <= 0 or n <= 0: return 0
        dp = [[0 for j in xrange(n)] for i in xrange(m)]
        for i in xrange(m):
            dp[i][0] = 1
        for j in xrange(n):
            dp[0][j] = 1
        for i in xrange(1, m):
            for j in xrange(1, n):
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
        return dp[m - 1][n - 1]

上面代码用了二维动态规划,其实可以简化成一维动态规划,空间复杂度也降为O(n)~代码如下

class Solution:
    # @return an integer
    def uniquePaths(self, m, n):
        if m <= 0 or n <= 0: return 0
        dp = [0 for i in xrange(n)]
        dp[0] = 1
        for i in xrange(m):
            for j in xrange(1, n):
                dp[j] += dp[j - 1]
        return dp[n - 1]
在网上看到还有一种更优化的解法,机器人一共要走m - 1 + n - 1步,其中m - 1步往下走, n - 1步往右走, 是一个组合问题,要 求C(m-1+n-1, n-1)或C(m-1+n-1, m-1),这种解法时间复杂度为O(min(m, n)),空间复杂度为O(1)~

class Solution:
    # @return an integer
    def uniquePaths(self, m, n):
        N = m - 1 + n - 1
        K = min(m, n) - 1
        # calculate C(N, K)
        res = 1
        for i in xrange(K):
            res = res * (N - i) / (i + 1)
        return res



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值