A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
要机器人从矩形格子的左上走到右下,机器人只能往下或往右走,问有几条路线~这种题首先想到的是动态规划,递推公式是dp[i][j] = dp[i - 1][j] + dp[i][j - 1], 代码如下~这种解法时间复杂度为O(m * n), 空间复杂度为O(m * n)(因为用了一个二维的数组~)
class Solution:
# @return an integer
def uniquePaths(self, m, n):
if m <= 0 or n <= 0: return 0
dp = [[0 for j in xrange(n)] for i in xrange(m)]
for i in xrange(m):
dp[i][0] = 1
for j in xrange(n):
dp[0][j] = 1
for i in xrange(1, m):
for j in xrange(1, n):
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
return dp[m - 1][n - 1]
上面代码用了二维动态规划,其实可以简化成一维动态规划,空间复杂度也降为O(n)~代码如下
class Solution:
# @return an integer
def uniquePaths(self, m, n):
if m <= 0 or n <= 0: return 0
dp = [0 for i in xrange(n)]
dp[0] = 1
for i in xrange(m):
for j in xrange(1, n):
dp[j] += dp[j - 1]
return dp[n - 1]
在网上看到还有一种更优化的解法,机器人一共要走m - 1 + n - 1步,其中m - 1步往下走, n - 1步往右走, 是一个组合问题,要
求C(m-1+n-1, n-1)或C(m-1+n-1, m-1),这种解法时间复杂度为O(min(m, n)),空间复杂度为O(1)~
class Solution:
# @return an integer
def uniquePaths(self, m, n):
N = m - 1 + n - 1
K = min(m, n) - 1
# calculate C(N, K)
res = 1
for i in xrange(K):
res = res * (N - i) / (i + 1)
return res